
Unix Music Tools at Bellcore

PETER S. LANGSTON

Bellcore, 445 South St., Morristown, NJ 07960-1910

4
4

mf

3 .
3

p ff

.

SUMMARY

A number of Bellcore projects have required software to manipulate musical data at a range of
different conceptual levels from notes to whole classes of pieces. In the absence of suitable pre-exist-
ing software for these projects, a set of modules was written in-house to run under the Unix® operat-
ing system. These programs were designed to be tools, each performing a specific subtask with little
or no preconception of the particular combinations in which they would be used. To ward that end, a
standard internal data representation was chosen, and all programs were either written to process
that format directly or, as more conceptual needs arose, to process a format that could be converted
to the standard.

This report describes our experience in the development of software to implement languages
and data descriptions specialized to the manipulation of musical entities. It explains why we did not
settle for existing software and gives some examples of the utility of well-designed music tools. We
give an overview of the scope of the software and describe our solutions to the problems of interfac-
ing music synthesizers with computers.

KEY WORDS Music Software Tools Little Languages Algorithmic Composition

INTRODUCTION

In the last seven years, since the introduction of the first powerful, inexpensive sound synthesizers
and the MIDI standard for digital communication between synthesizers,1 there has been no hardware
impediment to manipulating and performing musical materials under computer control; the outstanding
impediment has been a lack of powerful, inexpensive software.

Since the hardware breakthrough came via the consumer market, it is no surprise that the bulk of
software development has also been for the consumer market. In part, this means that the development has
been aimed at personal computers running personal computer operating systems. While the software that
has appeared performs amazingly well given the limitations of such computers and operating systems,
those limitations still show through.

The shortcomings of popular personal computer operating systems can be particularly restricting. It
is quite common for the well-equipped computer synthesist to have a few dozen programs, each unable to
communicate with the others except by a cumbersome transfer through disk files. As a result, most

‘‘Unix’’ is a registered trademark of AT&T.



consumer music software tries to do everything the user might need, hoping to avoid the difficulties of con-
stantly starting and stopping individual programs. A philosophical restriction that can weaken personal
computer software is the doctrinaire adherence to a uniform user interface across all programs; this can be
especially inappropriate when that interface was designed with text and graphic objects in mind. A final
shortcoming is the lack of a powerful, unobtrusive software development environment.

The Unix operating system does not suffer from these limitations. Unix is not entirely unknown in
the personal computer community, howev er; versions of Unix are available that either run on personal com-
puters or are equipped with cross-compilers for personal computers. Unfortunately, the users of personal
computers are often relatively computer-naive and prefer a glossy environment that does not allow users to
make a mistake. To date, the principal developers of commercial music software have been the users of
personal computers, often musicians who were dissatisfied with what was (or wasn’t) available.

Several projects at Bellcore have dealt with musical material.2,3,4 We will discuss three examples. A
telephone demonstration of algorithmic music composition2 composes and plays music to listeners dialed
up over the public switched telephone network.* A system called ‘‘IMG/1’’ composes background music
for video productions.4 An audio system monitor (‘‘mustat’’) lets people call in using a touch-tone tele-
phone and indicate the computer system of interest (with the touch-tone buttons). Mustat then composes
and plays a drum solo that characterizes the general system load and other useful information such as the
number of processes waiting in the run queue and the number of device interrupts per second. Each of
these projects relies heavily on features of the Unix operating system and would not have been practical
without its tools and tool-making environment.

The telephone demo runs programs on two computers in different wings of Bellcore’s Morristown
Research and Engineering facility. One machine runs SunOS Unix; the other runs Eighth Edition Unix.
While the speech synthesizers are distracting the caller, dozens of software tools compose, edit, and assem-
ble the pieces to be played. Many of the tools are the familiar Unix utilities − awk,5 grep, make,6 pic,7 etc.
Others are tools designed specifically for the music domain.

IMG/1 is a front end to a set of music composition tools. The intent was to make a system that was
glossy, ‘‘novice-friendly’’, and bullet-proof on the outside while still retaining the power of a modular, tool-
oriented system on the inside. As is the case with the telephone demo, a host of new and old tools do the
real work. We will mention IMG/1 and its components again later.

The audio system monitor was constructed entirely from tools written for other projects. Its front end
is the user-programmable telephone system implemented by Brian Redman.8 Its system data gathering con-
sists of lines of the form: ‘‘rsh system-name vmstat 3.’’ Its conversion of system activity data to
audio is done by the algorithmic composition program ‘‘ddm’’9 written for the telephone demo.

Over a hundred utilities and ‘‘little languages’’ (as defined by Jon Bentley10 and others) have come
out of these projects (many are described in ‘‘Little Languages for Music.’’3). Each program performs a
single function in as general a way as possible, making composition of functions (and composition of
music) straightforward.

UTILITY OF MUSIC TOOLS

Our music tools can be grouped into four broad categories; those that actually compose music algo-
rithmically, those that translate ascii encodings of musical data or compositional requirements into binary
data, those that perform transformations on musical data (filters), and those that provide utility functions
such as controlling mixers or maintaining voice libraries.

These tools make it possible to create, manipulate, and play music in a multitude of ways. The music
composition tools can generate ‘‘original’’ musical pieces on demand with the user controlling the compo-
sition process through command line arguments or specialized ‘‘little language’’ input. The encoding inter-
preters/renderers provide compact, easily edited, human-readable descriptions of music that can be con-
verted into other representations (including sound itself). The filters implement common musical functions
such as transposition, tempo control, note selection, accenting, synchronization, and others. The utility pro-
grams take care of much of the housekeeping and low-level control tasks required by hardware sound

* You can call (201) 644-2332 for a sample.



devices.

The shell command file in Figure 1 will generate an endless number of short brass band marches and
send them to be played on a remote machine called ‘‘operator.’’

while true; do
mkcc -smarch -kF -b32 >/tmp/chordchart
acca -t10 /tmp/chordchart >/tmp/accomp
accl -b32 -c4 /tmp/chordchart >/tmp/melody
merge /tmp/melody /tmp/accomp | rsh operator play

done
Figure 1 — Command File to Produce Many Marches

Since the data format being sent through the network is relatively sparse (approximately 140 bytes
per second of music) but is very sensitive to any form of data corruption or loss, this might be used to pro-
vide pleasant, but vigilant, monitoring of network integrity.

The program ‘‘IMG/1’’ provides a simple user interface to a set of tools that include those in the
command file of Figure 1. In IMG/1 the goal is the production of short pieces of incidental music to act as
backgrounds in video productions. A group at Bellcore charged with improving internal communications
between projects has successfully used IMG/1 to vivify taped demonstrations of technical projects and
progress reports. Without a tool like IMG/1 they would not have had the time or expertise to include music
in their productions. As it is, they hav e been able to produce pieces where IMG/1 provides the entire sound
track.

Another area in which our music tools can be of use is the monitoring of complex systems. Systems
such as those using dozens of distributed processors or arrays of interconnected machines can generate an
unmanageable amount of status data. Obviously software must be used to winnow out the important data
and make decisions about what to pass on to a human operator and what to ignore. The point when human
intervention is required may not be easy to determine, however. If too much data is passed on to the opera-
tor, the important message may be lost among the cautious warnings (the Computer−Who−Cried−‘‘Wolf ’’
syndrome). If too little data is passed on, the operator may not have enough background information to
solve the problem when it finally becomes catastrophic. By monitoring system parameters aurally, an oper-
ator does not have to actively focus attention on status output. The status information will be continuously
presented in a format that is received passively (and is unavoidable). This allows conscious and uncon-
scious processing by the operator. For instance, if some vital statistic hovers just short of the point at which
it would be called exceptional or if a pattern that heralded some prior problem appears, the operator is
alerted that trouble may be brewing.

A final use of our music software is in the realm of music research. Although the needs of any par-
ticular research effort are often hard to predict, it would be safe to say that the tools needed for research
projects in a given area are likely to overlap a fair amount, especially if those tools are modular units that
perform well-defined functions with a fair amount of generality and that share a common data model. In
music, for instance, almost any work will require basic functions such as: sending data to sound synthesiz-
ers, encoding the data that drives them, transposing pitches, modifying dynamics, changing tempo, merging
data streams, splitting data streams, encoding musical compositions, and so forth. We hav e routines that
provide these functions (and many more); the routines all read and/or write a common data format. To sup-
port a new data format all that is required is a pair of modules that convert to and from the common data
format. To provide a new function all that is required is a module that performs the function on the com-
mon data format or a format that can be converted into it.

DATA FORMATS

The common data format that acts as the lingua franca for our tools is something called ‘‘MPU for-
mat.’’ MPU format is a stream of time-tagged MIDI (binary) data.1 The basic MIDI data format is
organized into messages representing ‘‘events’’ such as depressing the key for middle C slowly or releasing
the sustain pedal. It specifies an ordering for these events, but not a time for each event. By prefixing each



MIDI message with a time-tag to indicate the delay since the previous message, the events can be posi-
tioned in time. MPU format is extremely compact (∼3k bytes per minute for classical piano music, includ-
ing expression data such as dynamic nuances)* and is understood by output devices made by a number of
manufacturers. It is, however, a binary format and essentially unreadable by humans.

To be able to read and edit the data conveniently requires converting the binary data to a format that
matches existing editing programs, i.e. commonly available text editors. To ward that end we use ascii
encodings of the data at several levels.

At the lowest level, we use what are essentially assemblers and disassemblers. In these we are deal-
ing with ascii symbols in place of binary data; each binary datum is represented by a symbol. Such encod-
ings are significantly less compact than the data they represent, but are completely general in the sense that
anything that can be expressed in the binary format can be expressed in the assembler format.

At higher levels, we use little languages that can be compiled into binary data or assembler input.
The language compilers can produce large amounts of data from each line of input. The relationship
between input symbols and output data is no longer one-to-one. In some cases we have decompilers to
reverse this process, but as the language level gets higher (and more conceptual) the language compilations
get harder to invert. With the decrease in size afforded by these languages comes a decrease in generality;
the compilers (and their designers) must make intelligent choices in the process of interpreting the state-
ments in the language.

Format Level Converts directly to Strengths Lacks

CCC high MPU, GC A, B, F E

DDM high MPU, M A, B, C F, H

DP mid MPU, MA A, B, F H

GC high MPU, MA, TAB A, B, F H

M mid MPU, pic, vtx B, F H

MA low MPU, MIDI B, F, H  A

MFS binary MPU G, H, I B, C, F

MIDI binary MPU, MA A, G, H B, C, F

MPU binary MIDI, MA, M, dt A, G, H B, C, F

MUT mid MPU, M A, B, F H

MUTRAN mid IBM 1620 binary A, F D

SD high M A, B, F  H

TAB high MPU B, F, I  H

A − Dense; compact encoding of data
B − Easily edited by ascii text editors
C − High-level conceptual description
D − Processing software exists
E − Large style repertoire

F − Easily read (understood) by human musicians
G − Standard; allows communication with other software
H − General; expresses anything expressable with MIDI
I − Encodes subtleties beyond keyboard capabilities

Figure 2 — Some Data Formats (Languages) for Music

The table in Figure 2 lists fourteen data formats ranging from raw MIDI data through the simple
assembler (MA) to languages that look very much like a musician’s instructions (CC, CCC, TAB). A level
is indicated for each language; languages labeled ‘‘mid’’ tend to be descriptions of notes in compact or oth-
erwise convenient form while those labeled ‘‘high’’ describe larger or more general objects than notes. The
boundary between them is a little fuzzy. Letter codes that appear in the ‘‘Strengths’’ column indicate par-
ticular advantages. Letter codes appearing in the ‘‘Lacks’’ column indicate either significant limitations of
the data format or as yet unfulfilled expectations. Thus ‘‘D’’ would only appear if it were lacking, while the

* This means that performances of every one of Scott Joplin’s fifty piano pieces could be recorded in ∼1
megabyte and would fit in your shirt pocket on a single 3½" floppy disk!



code ‘‘E’’ appears in both columns for CC because it can have a large style repertoire, but doesn’t yet.

Associated with each of these ascii data formats are programs that either convert it into music
encoded in MPU format or convert it to one of the other formats. Each format is used to represent a spe-
cific kind of musical expression. Some formats are targeted at a particular musical idiom or common
usage; in others the intent is to express the music as succinctly as possible. In many situations it will be
possible to encode a musical idea in several different formats − the choice of format will depend on the
expression that seems most natural to the person entering or manipulating it.

CC and CCC are descriptions of harmonic structure that are formatted to resemble the chord charts
used by studio and big band musicians (an example of CC data is presented later in this paper). DDM is a
probablistic description of drum rhythms that can be converted into drum accompaniments by a technique
called ‘‘stochastic binary subdivision.’’9 The DDM format has also been used to generate melodic lines; in
fact, the algorithmic composition telephone demo2 composes a complete piece for each caller using DDM
files to generate all the parts, both melodic and rhythmic, for an ensemble of three pitched instruments and
two sets of drums.

# "Marque - Son’s Chicken" (Frank Zappa) Drums by Chad Wackerman
#INCLUDE /u/psl/midi/etc/rx5defs.dp
#ROLL ˜ 5 64
#TEMPO 140
#QUANT 32
# 1 & 2 & 3 & 4
RIDE 6-----4---5---------------
TOM1 --------------˜˜6---------
TOM2 --4-5---4---6-------------
SNARE ------------------˜˜5-----
TOM3 ----------------------6---
BASS 7-----5---6---------------

Figure 3 — Example of DP Format

DP is a compact, ascii encoding of drum patterns that mimics the notation used by drummers. Figure
3 shows one measure of drum pattern, expanded slightly for readability (the same pattern could have been
written with sixteenth-note quantization instead of thirty-second). GC gives explicit instructions for gener-
ating a chorded accompaniment (such as those played on a guitar or piano) in a manner that isolates the
choice of pitches from the choice of metric patterns. M encodes multipart vocal music, associating the
lyrics with the musical information in a way that makes it easy to enter and edit. MA is an assembler for-
mat that can be converted to MPU, MIDI, or MFS output; it encodes these formats in symbolic, ascii form.

MFS and MIDI are international binary standards for encoding musical events. The MFS format
extends MIDI by including time-tags for each event and by encoding other data such as key signature, time
signature, tempo, and labeling of parts and sections. MPU is another extension of MIDI that includes time-
tags and miscellaneous controls such as metronome marking. SD is a very compact encoding of notes that
isolates melodic shape from choice of key by specifying relative scale degrees rather than absolute pitches.
MUTRAN is a ‘‘dead’’ language; the last known working compiler for this language ran on an IBM 1620 in
the mid-1960’s. It really should not appear in this list of formats/languages in use at Bellcore, but many of
its concepts are still in use, so it is included to provide historical perspective.* TAB is a semi-graphical,
ascii notation that resembles the tablature notation used by stringed instrument players; pitches are defined
by the way they are played rather than by the resulting note name.

Complete descriptions of all these languages cannot be included here; see ‘‘Little Languages for
Music.’’3 As an example of one of the more conceptual languages in use, let us look again at the shell
command file in Figure 1. The first and last lines, ‘‘while true; do,’’ and ‘‘done,’’ tell the shell to
repeat the enclosed block of commands forever. The second line,

mkcc -smarch -kF -b32 >/tmp/chordchart

* Nor does it hurt that it was the first compiler written by the current author, who is still curiously proud of it.



executes a program (mkcc) which will create a file (/tmp/chordchart) containing a description of the
harmonic structure of a march (-smarch) in the key of F (-kF) that is thirty-two measures long (-b32).
Each time this line is executed it will produce a (potentially) different harmonic structure that is plausible as
a march. The file produced is in the language called ‘‘CC.’’ CC is a language that consists of ascii state-
ments that can be edited with common Unix text editors and looks very much like the chord charts used by
musicians. Figure 4 shows a chord chart typical of those produced by the mkcc program in our example.

# Title 624151912
#STYLE march
#INCLUDE "/u/psl/midi/etc/accacc.cc"
#QUANT quarter
#PART Cl16
F / / / Dm6 / / / F / / / C / / /
F6 / / / C / / / Dm6 / / / Bb /  /  /
Dm6 / / / C / / / Bb /  /  /  Gm6 / / /
F64 / / / C7 /  /  /  F  /  /  /  F  /  /  /
#PART Cl16
F / / / Dm6 / / / Bb /  /  /  C  /  /  /
Bb / / / C / / / Bb /  /  /  F  /  /  /
Dm6 / / / C / / / Dm6 / / / Do /  /  /
F64 / / / C7 /  /  /  F  /  /  /  F  /  /  /

Figure 4 — Typical March Chord Chart in CC Format

The third line in our shell program example,

acca -t10 /tmp/chordchart >/tmp/accomp

generates an accompaniment to fit the harmonic structure specified by the chord chart file specified
(/tmp/chordchart). Since the chord chart file specifies a march in this case, the accompaniment gen-
erated by acca will consist of parts for tuba, three brass horns, and drums (bass drum, snare, and crash cym-
bal).

The fourth line,

accl -b32 -c4 /tmp/chordchart >/tmp/melody

generates a melodic line to fit the specified chord chart. The -b32 argument instructs accl to plan for the
entire piece to be thirty-two bars long (thus a suitable ending will be appended) while the -c4 argument
asks that the output be configured as MIDI channel four. Because this is a march (specified in the chord
chart file), the melody line generated by accl will be a trumpet part (which could be doubled on glocken-
spiel for the real, martial sound). The output generated by accl (and that generated by acca) is binary MPU
data; a command such as play /tmp/melody would play just the melody through an attached synthe-
sizer.

The fifth line in our example,

merge /tmp/melody /tmp/accomp | rsh operator play

merges the melody and accompaniment parts into a single binary MPU stream and sends the result to the
program ‘‘play’’ on the remote machine ‘‘operator.’’ Figure 5 shows an equivalent score for the beginning
of the first march generated by the shell command file in our example.

Trump.

Horn 3

Horn 2

Horn 1

Tuba

Perc.

&
&
&
&
?

b
b
b
b
b

c
c
c
c
c
c

ˇ .̌ˇ̌ ˇ
J̌�̌ˇ̌̄J̌�J̌�
J̌�̌ˇ̌̄J̌�J̌�
ǰ�̌ˇ̌̄J̌�ǰ�
J̌�̌ ˇ̌ J̌�
ˇ̌̌ ˇ ˇ̌ ˇ�̌

ˇ̌̌ˇ̌ˇ̌ ˇ̌
ˇ �J̌̌ ˛
ˇ �J̌̌ ˛
ˇ �ǰ̌ ˛
ˇ �J�̌̌̄ �J�̌̄ˇ̌̌ ˇ�̌̌̌ ˇ�̌

œ ˇ ˇ
J�̌�.ˇ̌̌ J̄̌�J̌.¯
J�̌�.ˇ̌̌ J̄̌�J̌.¯
jß̌�.ˇ̌̌ j̄̌�ǰ.̄
J̌.¯̌ˇ̄ǰ.̄ ǰ�ˇ̌̌�̌̌̌ ˇ̌̌̌ �̌̌̌ ˇ̌cym

snare

bass

Figure 5 — Typical March Score

An average output from an execution of these programs is 11,048 bytes long and takes one and one-



quarter minutes to play at a tempo of 102 beats per minute. Although 11,028 bytes is vastly more compact
than the 6,615,000 bytes required to store one and one-quarter minutes of sound on a ‘‘compact’’ disc, it is
more than twenty-two times the size of the CC file used to generate it.

LITTLE LANGUAGES AND UTILITIES

The Appendix, adapted from the previously mentioned report on little music languages,3 lists some
of the programs in use at Bellcore written specifically for the music domain. Many are filters that read
MPU data, perform some operation on it, and write MPU data back out (these are marked ‘‘MMF’’ in the
Appendix). One example is merge, used in Figure 1. A few other examples are:

bars -t20 <bach >beg copy the last 20 measures (tail)

chmap 1=5 5=1 <orch >neworch swap MIDI channels 1 and 5, ignore others

invert C3 <tonerow1 >tonerow2 invert pitches around middle C (C3)

keyvel -g1.5 <quiet >loud make all notes 1½ times as loud

notedur -f2.25 <short >long make all notes 2¼ times as long

retro <mozart >trazom reverse the notes (retrograde motion)

select -k0-63 <piece >bass select all the notes below middle C

In each case we have chosen simple uses (to make them fit on a single line with a descriptive comment).
More complicated uses involve greater use of the command line arguments, pipelines of these commands,
or, in cases where multiple parallel streams of data are involved, using commands which invoke other com-
mands. Here are three slightly more complicated examples:

bars -h2 -f6 -l10 -t2 <big >excerpts

Copy the first 2 measures (-h2), 4 measures from the middle (-f6 -l10), and the last 2 measures (-t2) of
‘‘big’’ into ‘‘excerpts.’’

invert G3 <bach | retro | notedur -f3 | mjoin | play

Take the retrograde inversion of ‘‘bach’’ and make the notes legato by lengthening them and joining over-
lapped notes; then play it.

filter <old -v1-40 -c2 "notedur -f2.0" >new

Copy ‘‘old’’ into ‘‘new’’, making any quiet notes on channel 2 last twice as long and leaving everything
else unchanged. Notice that this example would be much more cumbersome without the filter command to
split and recombine the data stream:

select <old -v1-40 -c2 | notedur -f2.0 >tmp1
select <old -allbut -v1-40 -c2 >tmp2
merge tmp1 tmp2 >new
rm tmp1 tmp2

Another group of tools in the Appendix are those, marked ‘‘AMC,’’ that perform high-level rendering
of their input, simulating a human musician or group of musicians. Acca is one example. The program
‘‘lick’’ reads accompaniments encoded in GC format and produces solos for the five-string banjo that take
into account the peculiar mechanics associated with playing that instrument. Lick produces both MPU out-
put and TAB output for the solos it generates. Figure 6 shows the first four measures from a run of lick
(here transcribed into standard music notation using mpu2m, m2p.awk, and pic).

The remainder of the programs in the Appendix simply provide convenient utility functions such as



4
4

Gm Adim

44

Gm D7

Figure 6 — Lick Output

setting parameters on MIDI-controlled devices or converting from one format or language to another.

Several programs not listed in the Appendix are being used extensively in music projects. These are
programs like awk,5 echo, make,6 pic,7 sed, and /bin/sh that were not written specifically for music, but
rather for text. Although it is convenient to use binary formats like MPU format for specialized music pro-
cessing, we gain a great deal of power by being able to convert the binary data to any one of several ascii
forms for processing by the hundreds of tools that exist for textual representations.

da <tunisia.mpu | wc -l
da <tunisia.mpu | grep -v " progc " | ra >tunisia2.mpu

Figure 7 — Example of Text Processing in Music

As an example, the MPU disassembler ‘‘da’’ recognizes each different kind of MIDI command (a
messy task) and outputs each on a single line with a descriptive menmonic. The two lines in figure 7 each
read binary MPU data from the file ‘‘tunisia.mpu’’; the first produces a count of the number of MIDI com-
mands in the file, and the second creates a copy with all the voice loading commands removed; (‘‘progc’’ is
the mnemonic for the voice selection command, a.k.a. ‘‘program change’’).

DEVICE DRIVERS

One of the practical problems with controlling MIDI devices by computer is getting the data to the
devices at the right data rate and at the right time. We hav e been successful with two approaches. The first
uses a complicated external hardware device to buffer data and clock it out according to the time tags. The
second uses an RS-232 serial port connected through a simple voltage to current-loop converter.

mini computer

user program

kernel driver

bus interface

MIDI keyboard

MIDI synthesizer(s)

external interface

Figure 8 — MPU/MIDI Data Flow

Both approaches are represented schematically by the diagram in Figure 8 but the components in the
diagram function differently in the two approaches, providing different strengths and weaknesses. We will



describe the software involved (and the hardware which requires it) briefly here; a more detailed treatment
may be found in the report ‘‘Getting MIDI from a Sun’’.11

Using an External Buffer

Several manufacturers make a device that is designed to attach to a microcomputer and provide a
‘‘smart’’ interface to hardware devices that communicate via the MIDI data protocol. In order to connect
one of these to the Sun workstations that were available to us we needed to build a small Multibus interface.
This interface did little more than recognize bus addresses and pass interrupt and data lines on to the device.
The next step was to provide a kernel device driver to handle the device. For various reasons this turned out
to be a very messy task. Fortunately, we were able to get a working device driver from Gareth Loy at
UCSD that already did 60% of what we needed, so the problem became the simpler one of deciphering a
driver written to handle a very messy task.

Once the buffering device (a Roland MPU-401 in our case) was connected to the interface and the
kernel driver installed we were able to control synthesizers, mixers, lighting dimmers, patchbays, every-
thing but a kitchen sink, with programs running in a multi-user, multi-tasking, tool-based environment −
truly a luxury system. Of course there are drawbacks. Having the external device doing the timing makes
it difficult to know exactly how far the audio output has gotten at any particular instant. This is a burden to
applications where something not under MIDI control must be coordinated with the music (e.g. score dis-
play or a text-driven speech synthesizer). Further work is planned in this area.

Using a Serial Port

The MIDI data rate is 31.25 k baud and the electrical connection is a 5 milliampere current loop.
Serial ports based on the RS-232 (or RS-423) standard generate 19.2 k baud and 38.4 k baud as standard
rates and provide a voltage of between 5 and 15 volts. A simple device consisting of handful of electrical
parts can be built to convert RS-232 voltage levels to MIDI current requirements and vice-versa. One pop-
ular integrated circuit chip used to drive serial ports in modern workstations, the Zilog 8530 Serial Commu-
nications Controller, sets the speeds of the its serial ports by loading a divisor to use in scaling down its
internal clock. Fortunately, there is a divisor setting which produces 30.7 k baud. Although this is not quite
within the MIDI specification (which is 31.25 k ±1%) we have used it successfully with dozens of MIDI
devices.

The simplest way to add a MIDI connection to an existing Unix system running on a computer that
uses the Zilog 8530 is to trick the ‘‘tty’’ kernel driver into setting the 30.7 k baud speed when the user asks
for some otherwise unused speed. The adb command can be used to change the relevant constant in the
kernel. This quick and dirty hack has one major drawback: since the tty driver just thinks it is dealing with
text it has no sense of when to send the data. As a result, the user program must control the timing, but user
processes may be interrupted or swapped out of memory at arbitrary times. On the other hand, this means
that the user program knows exactly what has been heard and what has not. Thus applications can coordi-
nate other events with the music. A more complicated approach is to provide a device driver that enforces
the timing implicit in the time-tags. This is still a much simpler device driver than that required for the
‘‘smart’’ buffering devices and, with careful design, the uncertainty about the progress of the audio output
can be reduced to a very small fraction of a beat.

CONCLUSIONS

We hav e described a large collection of software tools specialized to music generation and processing
tasks. By design, each tool performs a single, well-defined task. Also by design, each tool is able to work
with all the other tools, either directly, or through a conversion utility. As a result, we have over a hundred
single tool operations, several thousand operations that involve two tools, and so forth. Each new tool that
we create (assuming it provides some useful function) adds hundreds of useful compound operations to our
toolkit. Our initial decision to pursue a tool-oriented approach has proven quite successful.



ACKNOWLEDGEMENTS

Gareth Loy of UCSD and Michael Hawley of NeXT Computers (at Lucasfilm Ltd. at the time) pro-
vided the initial version of the MPU kernel device driver and have generally shared music software12 and
encouragement with us. Daniel Steinberg of Sun Microsystems has also lent encouragement as well as ker-
nel expertise to these projects.

REFERENCES

1. The International MIDI Association, MIDI 1.0 Detailed Specification, Document version 4.1. I. M. A., 5316 W.
57th St., Los Angeles, CA 90056, 1989.

2. P. S. Langston, ‘(201) 644-2332 • Eedie & Eddie on the Wire, An Experiment in Music Generation’, Proceed-
ings of the Usenix Summer ’86 Conference, 1986.

3. P. S. Langston, ‘Little Languages for Music’, Bellcore Technical Memorandum, 1989. To be published in Com-
puting Systems with musical examples on compact disc (1990).

4. P. S. Langston, ‘‘IMG/1 − An Incidental Music Generator’’ Bellcore Technical Memorandum #ARH-016281.
Submitted to Computer Music Journal.

5. A. V. Aho, B. W. Kernighan, and P. J. Weinberger, ‘AWK − A pattern scanning and processing language’, Soft-
ware − Practice and Experience 9, 267−280 (1979).

6. S. Feldman. ‘Make − A program for maintaining computer programs’, Software − Practice and Experience, 9,
255−265 (1979).

7. B. W. Kernighan, ‘PIC − A Graphics Language for Typesetting’, AT&T Bell Laboratories Computing Science
Technical Report No. 116, 1984.

8. B. E. Redman, ‘A User Programmable Telephone Switch’, Bellcore Technical Memorandum, 1987.
9. P. S. Langston, ‘Six Techniques for Algorithmic Composition’, Bellcore Technical Memorandum

#ARH-013020, June 1989.
10. J. Bentley, ‘Programming Pearls’, Communications of the ACM, 29, (8), 711−721 (1986).
11. P. S. Langston, ‘Getting MIDI from a Sun’, Bellcore Technical Memorandum #ARH-016282, 1989.
12. M. Hawley, ‘MIDI Music Software for Unix’, Proceedings of the Usenix Summer ’86 Conference, 1986.



APPENDIX

Little Music Language Tools
acca cc mpu AMC of stylized accompaniments
accl cc mpu AMC of stylized melody lines
adjust mpu mpu MMF to retime a piece from a click track
allnotesoff CLA mpu UTG MIDI commands to clear stuck notes
axtobb ma mfs,midi,mpu assemble MFS/MIDI/MPU files
bars mpu mpu MMF to cut and paste measures
bbriffs CLA mpu AMC using the ‘‘riffology’’ technique
bbtoax mfs,midi,mpu ma convert MFS/MIDI/MPU files to MPU assembler
ccc ccc mpu chord chart compiler - produce accompaniments
ccc2gc ccc gc convert chord charts to guitar chord files
ched GFX,mpu GFX,mpu editor for MPU data
chmap mpu mpu MMF to map MIDI channels
chpress CLA mpu UTG MIDI channel after-touch
cntl CLA mpu UTG MIDI continuous controller messages
da midi,mpu ma MIDI/MPU disassembler
ddm ddm m,mpu AMC of drum rhythms and melodies
ddmt GFX GFX,ddm,mpu AMC of drum rhythms and melodies
dp2ma dp ma convert drum pattern files to MPU assembler
dp2mpu dp mpu convert drum pattern files to MPU data
ekn CLA cc,mpu AMC for network testing
fade GFX GFX,mpu MIDI mixer controller
filter mpu mpu MMF to invoke filters on parts of an MPU data stream
fract mpu mpu AMC MMF to perform fractal interpolation
gc2ma.awk gc ma convert guitar chord files to MPU assembler
gc2mpu gc mpu convert guitar chord files to MPU assembler
grass cc mpu AMC of bluegrass music
inst CLA mpu UTG MIDI program change commands
invert mpu mpu MMF to perform pitch inversion
julia CLA mpu AMC based on Julia sets
just mpu mpu MMF to quantize timing
keyvel mpu mpu MMF to manipulate key velocities
kmap mpu mpu MMF to remap MIDI key numbers
kmx GFX GFX,mpu MIDI patch bay controller
lick gc mpu,tab AMC of banjo solos
m2mpu m mpu convert M files to MPU data
m2p.awk m pic convert M files to pic macros for scoring
mecho mpu mpu MMF to delay and echo selected MIDI data
merge mpu mpu MMF to combine MPU data streams
mfm GFX,mpu GFX,mpu wav esample editor/generator
mfs2mpu mfs mpu convert MFS files to MPU data
midimode mpu mpu MMF to defeat ‘‘running status’’
mirpar GFX,mpu GFX,mpu interface to get/set Ensoniq Mirage parameters
mixer GFX GFX,mpu MIDI mixer controller front end
mixplay midi,mpu /dev/mpu combine MIDI & MPU data and play it
mjoin mpu mpu MMF to join overlapped notes
mkcc CLA cc AMC chord chart generator
mozart CLA mpu AMC based on the musical dice game
mpp * * music file preprocessor
mpu2m mpu m convert MPU data to M format
mpu2mfs mpu mfs convert MPU to MFS



Little Music Language Tools
mpu2midi mpu midi convert MPU to untimed MIDI
mpu2pc mpu mpu calculate pitch change track from MPU data
mpuartin midi midi read and filter raw MIDI from MPU-401
mpuclean mpu mpu MMF to condense MPU data
mpumon mpu ma split MPU data stream into MPU and MA streams
mustat vmstat mpu musical operating system monitor
mut2m mut m convert MUT files to M files
mut2mpu mut mpu convert MUT files to MPU data
notedur mpu mpu MMF to manipulate note durations
numev mpu TEXT provide statistics about an MPU file
p0l grammar mpu AMC based on 0L system grammars
pbend CLA mpu UTG MIDI pitch-bend commands
pellscore GFX,cc cc,mpu AMC of background/incidental music
pharm mpu mpu MMF to add parallel harmonization
play mpu /dev/mpu play MPU data through the MPU-401
pseq CLA mpu AMC of logo sound sequences
ra ma mpu assemble MPU assembler files
record /dev/mpu mpu input interface to MPU-401
retro mpu mpu MMF to generate retrograde melody
rpt mpu mpu MMF to repeat sections of MPU data
rtloop mpu midi convert MPU to timed MIDI (in ‘‘real-time’’)
scat mpu DT convert MPU data to scat for voice synthesizer
sd2m.awk sd m convert SD files to M files
select mpu mpu MMF to extract specified events from MPU data
sing mpu DT combine MPU data & phonemes for voice synthesizer
slur mpu mpu MMF to substitute pitch-bend for key-off/on
stats mpu TEXT provide statistics about an MPU file
sustain mpu mpu MMF to convert sustain pedal to note duration
sxmon midi ma monitor system exclusive MIDI data from MPU-401
sxmpu midi,mpu midi,mpu send/capture MIDI system exclusive dumps
tab2mpu tab mpu convert TAB files to MPU data
tempo mpu mpu MMF to change tempo
tmod mpu mpu MMF to apply a tempo map
tonerow CLA mpu AMC of 12-tone sequences
transpose mpu mpu MMF to transpose pitches
trim mpu mpu MMF to remove silent beginnings & endings
tshift mpu mpu MMF to shift MPU data in time
txvmrg midi midi UTG 32-voice TX816 dumps from 1-voice dumps
umecho midi midi loop back MIDI data through a serial port
ump mpu midi convert MPU data to MIDI through a serial port
unjust mpu mpu MMF to add random variation to timing
vmod mpu mpu MMF to apply a dynamic (velocity)map
vpr midi TEXT UTG parameter listings from DX7/TX7/TX816 voices

Abbreviations used in the table:
AMC algorithmic music composition
CLA command line arguments
DT DecTalk DTC01 speech synthesizer commands
GFX graphic input or output (mouse, screen)

MMF MPU to MPU filter
TEXT general ascii text
UTG ‘‘utility to generate’’


