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ABSTRACT

‘‘Little languages’’ are programming languages or data description languages that
are specialized to a particular problem domain. In the last decade, little languages have
emerged to support a multitude of tasks ranging from complex statistical calculations to
the construction of lexical parsers. Meanwhile, in the last half decade, a multitude of
computer-controlled sound synthesis devices have become available. Unfortunately, there
has been little overlap of these two dev elopment areas and the software to support these
new devices has been rudimentary at best.

This report describes a handful of little languages that have been designed for
music tasks. Some of them allow particularly dense encoding of musical material or
specify music at a higher level of abstraction than ‘‘notes’’, others present musical data in
a form that is easy for users to read and edit. In all cases the representations are machine-
readable and in most cases they can be ‘‘played’’ on a sound synthesizer by a computer.
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1. Introduction

The areas of endeavor that require computer software support can be broadly divided into three
classes. First are those in which the problems to be solved are known at the outset, so a single program or
suite of programs can be designed to provide all the necessary functions. Most financial programming
tasks fall in this class (accounts payable, payroll, billing, etc.) Second are those areas at the other extreme,
in which few of the problems and goals can be predicted in advance. Support for these areas must come in
the form of general-purpose programming languages that make as few assumptions as possible about the
problem goals and techniques. The familiar, high-level programming languages (FORTRAN, PL/I, Pascal,
etc.) address these areas.

The third class consists of those areas that fall in between the first two classes; areas in which enough
is known in advance to make the use of general-purpose programming languages unnecessarily tedious, but
in which too little is known to make monolithic does-everything-you’ll-ever-want-to-do (DEYEWTD) sys-
tems possible. Software development often finds itself in this area.

Software support for tasks in this third class usually takes the form of a programming environment or
programs that ‘‘know’’ a little about the task area, but make few assumptions beyond those that characterize
the area. The term ‘‘little language’’ is often applied to such moderately general programs. Examples of
little languages range from the program awk (which borders on being a general-purpose programming lan-
guage) through programs like bc, lex, and make to systems like S (which borders on being a DEYEWTD).
Much of the development in software engineering in the last ten years has been in the area of little lan-
guages; as Jon Bentley says in [BENTLE86], ‘‘Little languages are an important part of the popular Fourth-
and Fifth-Generation Languages and Application Generators, but their influence on computing is much
broader.’’

Meanwhile, 1982 and 1983 saw two unusual events occur in the high-tech consumer electronics
industry. First, representatives of consumer electronics companies had agreed on a standard interface for
connecting electronic musical instruments together called ‘‘MIDI.’’1 In this intensely competitive industry,
where competing, incompatible standards abound (VHS/Beta, NTSC/SECAM/PAL, RIAA/NARTB, to
name a few), this was indeed an unusual event. The second unusual event was the introduction of a
keyboard synthesizer known as the Yamaha DX7. This was the first "serious" sound synthesizer to appear
with a list price below $25 per oscillator. The DX7’s low price was the result of mass-production of the
large scale integration circuit chips in it. Thousands of DX7s have been sold. In the following six years
consumer music manufacturers and products have proliferated, causing the cost of computer-controlled
sound synthesis equipment to drop even lower.

A common feature of these products, from the DX7 on, has been the inclusion of the MIDI commu-
nication interface. Whether the success of the MIDI standard was a result of the success of instruments like
the DX7 or vice-versa is a genuine chicken-and-egg question. Neither would have been as successful with-
out the other.

Along with the plethora of digitally-controllable musical instruments has come a plethora of com-
puter software to control, record, generate, and otherwise manipulate the digital data that these instruments
read and write. Most of this software has been written for the hobbyist computers that have also been pro-
liferating during this decade. Unfortunately, these computers are low powered and support relatively

1 ‘‘MIDI’’ is an acronym for ‘‘Musical Instrument Digital Interface.’’



primitive operating systems. As a result, the available software is usually in the form of stand-alone pro-
grams that must try to be DEYEWTD’s (often failing to do even one thing well), and that cannot interface
with other programs directly.

At Bellcore we were lucky enough to have a large selection of powerful minicomputers running the
Unix® operating system. Although little, if any, of the commercially available music software could be run
on our systems, everything that would run on our systems could be interfaced with everything else. All we
had to do was interface our computers to MIDI [LANGST89b] and then write all the software ourselves!
In the process of writing and using this music software we found ourselves doing the same thing over and
over again. So we started looking for ways to make the common tasks easier and the little languages
described in this paper were born.

The meat of this paper is sixteen sections describing specific aspects of these little languages. Three
sections describe binary formats and eleven describe ascii formats. All of the ascii formats were either
developed (marked with a dagger in the following list) or extended by the current author. Each format has
one or more associated programs that process it; some convert to other formats and some perform transfor-
mations on the data; there are over one hundred such programs in all (see Appendix B and the ‘‘Little Lan-
guage Characteristics’’ table in the Summary). Although there is not room to give more than a one-line
description of each of these programs, two of the programs are described in detail; one is a very general
program (mpp) that is a preprocessor for all of the ascii formats; the other is a program (lick) that performs
an unusual conversion on one of the ascii formats.

The sixteen sections are:

Binary Formats

MIDI Standard real-time synthesizer control language.

MPU Standard time-encoded synthesizer control language.

SMF Standard time-encoded synthesizer control and music description language.

Ascii Formats

MPP† Music preprocessor program.

MA Ascii time-encoded (low lev el) synthesizer control language.

MUTRAN† Ancient melody description language.

MUT† Melody/harmony description language based on MUTRAN.

M† Melody/harmony/lyric description language based on MUTRAN.

DP† Drum pattern description language.

SD† Melody/harmony description language.

CCC† Accompaniment (chord chart compiler) description language.

CC† Harmonic structure (chord chart) description language.

GC† Guitar chord description language.

LICK† Banjo improvisation generator program.

TAB† Stringed instrument music notation language.

DDM† Algorithmic composition language.

The generation of these little languages was not as monumental a task as it might sound for three rea-
sons. First, a few other people in the same situation have been most helpful either as collaborators or as
sources/sinks for software efforts. These include Michael Hawley [HAWLEY86], Gareth Loy, Daniel
Steinberg, and Tim Thompson [THOMPS89][THOMPS90]. Second, the software tools available with the
Unix operating system make software development easy. Third, creating a little language to support a class
of activities is often only marginally more work than writing a program to perform an instance of those
activities and is certainly a more rewarding (and therefore motivating) task.

‘‘Unix’’ is a registered trademark of AT&T.



The languages described here have been in use for periods ranging from six months to six years and
have made possible projects like the algorithmic music composition telephone demo [LANGST86] and the
algorithmic background music generator ‘‘IMG/1’’ [LANGST90] as well as dozens of other, in-house
projects [LANGST88] [LANGST89a].

2. Binary Formats

There are several machine-readable formats that encode musical data specifically for use with synthe-
sizers. These are binary formats and as such they are difficult (if not impossible) for humans to read
directly. They were designed to specify the details of synthesizer actions in as dense a form as possible,
often packing several fields into a single byte. Further, they depend on knowledge of prior data to evaluate
following data; they cannot be interpreted from an arbitrary starting point in the middle of a sequence
(unlike a tape recording that can be played from any point within a piece). An important limitation of these
encodings is that, in order to save space, assumptions were made about the kinds of events that would be
recorded (e.g. pitches would be based on fixed chromatic scales) making extensions to other sets of
assumptions cumbersome at best.

Because of their density and the availability of synthesizers that read them, these formats may be the
best choice for program output. All of the little languages described in this paper have associated programs
that convert them to at least one of these binary formats. A brief description of three of these binary for-
mats is included here to provide an understanding of the range of events we can hope to control with little
languages for controlling synthesizers.

2.1. MIDI Format

MIDI was the result of a multi-vendor task force charged with designing a standard digital inter-
change protocol for sound synthesizers. It has been a resounding success. Virtually all sound synthesizer
manufacturers now make their devices read and/or write MIDI format. Many other kinds of devices also
use MIDI data to control their operation − mixers, echo units, light controllers, etc. A whole industry exists
to supply MIDI hardware devices and MIDI software. The authoritative description of the MIDI format is
the ‘‘MIDI 1.0 Detailed Specification’’ [MIDI89] published by the International MIDI Association.

MIDI is not a little language in the usual sense of the term, however, a description of it is included
here because MIDI is the lingua franca of sound synthesizers. Any music representation that needs to be
‘‘playable’’ on modern sound synthesis equipment must be convertible into MIDI.

MIDI data are represented as a serial, real-time data stream consisting of a sequence of messages rep-
resenting synthesizer ‘‘events’’ such as note-start, note-end, volume change, or parameter selection. MIDI
messages consist of one status 8-bit byte followed by zero, one, or two data bytes (except in the case of
messages that start with a system exclusive status byte, which may have an arbitrary number of data bytes
followed by an end-of-exclusive status byte). Status bytes have the high-order bit set while data bytes have
the high-order bit clear. The defined values for status bytes are shown in Figure 1.

MIDI describes ‘‘events’’ (e.g. hitting a key or moving a control) rather than ‘‘notes’’. In order to
encode a ‘‘note,’’ a pair of ‘‘events’’ must be specified − a ‘‘key-on’’ event and a ‘‘key-off’’ event. The
MIDI standard defines key-on and key-off events as having two associated data bytes: a key-number (i.e.
pitch) and a velocity (or loudness). Ke y-numbers range from 0 to 12710 with 6010 representing middle C.
In this paper we will use the convention that middle C is called ‘‘C3’’2 and the note one half-step below it is
called ‘‘B2.’’ Thus 0 represents C in octave -2 or ‘‘C-2’’ and 12710 represents G in octave 8, ‘‘G8.’’ Veloci-
ties range from 1 to 12710 in arbitrary units with 1 being the slowest (quietest) and 6410 being mezzo-forte.

MIDI allows up to sixteen channels of data to be multiplexed into a single stream by specifying a
channel number in each status byte (with the exception of the system messages which are global). Synthe-
sizers can be configured to accept messages on a single channel or on all channels (‘‘omni mode’’).

2 There is some confusion on this matter; the nomenclature that has been in use by musicians and scientists for
many years designates middle C as ‘‘C4.’’ Unfortunately, the Yamaha corporation chose to use ‘‘C3’’ for mid-
dle C and by dint of their importance in the market many manufacturers have followed suit.
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MIDI Status Number Effect on
COMMAND byte Meaning of data running
FORMATS (hex) bytes status

8n Key Off 2 8n
9n Key On 2 9n

Channel An Polyphonic After Touch 2 An
(n = 0−F) Bn Control Change 2 Bn
Message Cn Program Change 1 Cn

Dn Channel After Touch 1 Dn
En Pitch Bend 2 En

Excl. F0 System Exclusive ? clear
F1 undef. − clear
F2 Song Position Pointer 2 clear
F3 Song Select 1 clear

Common F4 undef. − clear
F5 undef. − clear
F6 Tune Request 0 clear

System F7 End of Sys.Excl. 0 clear
Message F8 Timing Clock (TCIP) 0 none

F9 undef. (TCWME) 0 none
Real FA Start 0 none
Time FB Continue 0 none

FC Stop (TCIS) 0 none
FD undef. (clock to host) 0 none
FE Active Sensing 0 none
FF System Reset 0 none

Figure 1 — MIDI Status Bytes

In order to minimize the number of bytes transmitted, the MIDI specification allows the omission of
a status byte if it is identical to the preceding status byte. Thus, a series of key-on events only requires the
key-on status byte be transmitted for the first key-on event. This is called ‘‘running status.’’ To take advan-
tage of running status most synthesizer manufacturers allow a key-on event with a velocity of 0 to be used
as a synonym for key-off. Therefore, the sequence 0x90 0x3c 0x40 0x3c 0x00 represents two
ev ents, a key-on event for a mezzo-forte middle C and a key-off event for middle C.

c5 7 select program (voice) 8 on channel 6
b5 4 7f set foot controller value to 127 on channel 6
95 3c 40 C3 key-on, channel 6, vel=64 (mezzo-forte)

3c 0 C3 key-on with vel=0 => key-off (note running status)
3e 40 D3 key-on
3e 0 D3 key-off
40 40 E3 key-on
40 0 E3 key-off
41 40 F3 key-on
41 0 F3 key-off
43 40 G3 key-on
43 0 G3 key-off
45 40 A3 key-on
45 0 A3 key-off
47 40 B3 key-on
47 0 B3 key-off
48 40 C4 key-on
48 0 C4 key-off

Figure 2 — MIDI Data for a C Major Scale

Figure 2 shows the MIDI data for a C major scale printed as ascii equivalents for the binary data, one
MIDI message per line with a comment appended. You may wonder why the MIDI data on the left and the
comments on the right don’t seem to jibe very well. If so, keep in mind that the MIDI data is shown in hex-
adecimal, as is common for printed versions of MIDI data, and although hexadecimal numbering starts at 0,
synthesizer manufacturers number voices (a.k.a. ‘‘programs’’) and channels starting with 1. (And MIDI
data was not designed for human consumption anyway.)
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Audio example 1 on the compact disc was generated from the data in Figure 2. The data is played
three times, once with ‘‘no’’ delay between notes, once with a tenth of a second delay after every MIDI
message, and once with more syncopated delays. Since MIDI transmission occurs at a rate of about three
bytes per millisecond (see ‘‘Technical Notes on the Audio Examples’’) the first playing takes less than six-
teen milliseconds.

MIDI data is real-time; nothing in the MIDI specification tells ‘‘when’’ an event is to occur; every-
thing happens when the data is sent. For the purpose of slaving one synthesizer to another this is perfectly
adequate; when the first synthesizer makes a sound the slave synthesizer also makes a sound; whatever con-
trols the first synthesizer specifies the timing for both. However this is not adequate when we want to store
a performance in a file on a computer; something must encode the timing information with the MIDI data.
Either the MPU format or the SMF format can provide the needed timing information.

2.2. MPU Format

The MPU data format gets its name from an early hardware interface device manufactured by the
Roland Corporation, the MPU-401. This device interconnects a computer and synthesizers, providing tim-
ing functions and other features such as tape synchronization and a metronome. Several companies make
similar interfaces that implement the same protocols in order to take advantage of existing software.

The Roland MPU-401, when run in its ‘‘intelligent’’ mode, accepts ‘‘time-tagged’’ MIDI data,
buffers it up, and spits it out at the times specified by the time-tags. The time-tags are relative delays indi-
cating how many 120ths of a quarter-note to wait before sending out the next MIDI data. Notice that the

00 90 3c 40 78 80 3c 00
00 90 43 40 1e 80 43 00
00 90 3c 56 00 40 56 00
43 56 5a 80 3c 00 00 40
00 00 43 00

Figure 3 — Time-Tagged MIDI Data

MPU’s timing resolution is one 480th note. The maximum allowable time-tag is 23910 (EF16). Thus, a
mezzo-forte quarter-note of middle C immediately followed by a mezzo-forte sixteenth-note of the G above
it and then a forte C major chord lasting a dotted eighth note could be encoded by the binary data shown in
Figure 3. Audio example 2 on the compact disc was generated from this data. The same data is shown,
rearranged for readability and commented, in Figure 4.

time status key vel
00 90 3c 40 delay 0, key-on, key 3c16=6010=C4, velocity 4016=6410

78 80 3c 00 delay 7816=12010, key-off, key 3c16=6010=C4

00 90 43 40 delay 0, key-on, key 4316=6710=G4, velocity 4016=6410

1e 80 43 00 delay 1e16=3010, key-off, key 4316=6710=G4

00 90 3c 56 delay 0, key-on, key 3c16=6010=C4, velocity 5616=8610

00 40 56 delay 0, key-on, key 4016=6410=E4, velocity 5616=8610

00 43 56 delay 0, key-on, key 4316=6710=G4, velocity 5616=8610

5a 80 3c 00 delay 5a16=9010, key-off, key 3c16=6010=C4

00 40 00 delay 0, key-off, key 4016=6410=E4 (running status)

00 43 00 delay 0, key-off, key 3c16=6010=C4

Figure 4 — Time-Tagged MIDI Data Explained

The MPU also defines some of the undefined MIDI status codes to represent time-related events not
covered by the basic MIDI specification. Figure 1 includes annotations for these extra definitions. The
value F916 is used to indicate the presence of a bar line and is called ‘‘Timing Clock With Measure End’’
(TCWME). The value FD16 is used to alert the host computer that a clock tick has occurred and is called
‘‘Clock To Host’’. Two of the defined status codes are given modified meanings by the MPU to handle
other time-related events. During recording, the value F816 ‘‘Timing Clock’’ is used in place of a time-tag
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and without any MIDI data to indicate that the internal MPU clock has reached its maximum value, 24010;
this code is called ‘‘Timing Clock In Play’’ (TCIP). To represent a delay of 24010 clock ticks any other way
would require four bytes.3 Similarly, during playback, the MPU interprets TCIP as a delay of 24010 clock
ticks. If an F816 is received after a time-tag it is treated as a no-op with the delay specified by the time-tag.
In some cases, the value FC16 is treated like TCIP; it appears without a time-tag when the MPU has been
told to stop recording, but data are still arriving.

The MPU format for storing MIDI is the lowest common denominator for musical data storage in our
system. All the little languages can be converted to MPU format which then can be ‘‘played’’ on the syn-
thesizers.

2.3. SMF Format

Although MIDI was originally designed to let synthesizers be interconnected in performance (i.e.
real-time) situations, the designers and users of MIDI quickly became aware of the need to save timing and
other information with MIDI files. To ward this end, the ‘‘standard MIDI file format’’ (SMF) was estab-
lished [MIDI88].

The standard MIDI file format is far broader in scope (if not complexity) than the MPU format. To
quote from the SMF proposal; "MIDI files contain one or more MIDI streams, with time information for
each event. Song, sequence, and track structures, tempo and time signature information, are all supported.
Track names and other descriptive information may be stored with the MIDI data."

Had the SMF format existed when our music projects started, we probably would have used it as the
principal encoding for music data; in its absence we used MPU format. Although we are able to convert to
and from SMF, its use has primarily been for communication with other systems. A brief description of
SMF is presented here for completeness.

<SMF file> :: <header chunk> <track chunks>
<header chunk> :: "MThd" [[6]] <format> <ntrks> <div>
<format> :: [0] | [1] | [2]
<ntrks> :: [0:65535]
<div> :: <ticks per beat> | <ticks per sec>
<ticks per beat>:: [0:32767]
<ticks per sec> :: [-32768:-1]
<track chunks> :: <track chunk> | <track chunk> <track chunks>
<track chunk> :: "MTrk" <length> <trk events>
<length> :: [[1:4294967295]]
<trk events> :: <trk event> | <trk event> <trk events>
<trk event> :: <delta-time> <event>
<delta-time> :: <varnum>
<varnum> :: 00:7F | 80:FF <varnum>
<event> :: <MIDI chan event> | <sysex event> | <meta-event>
<chan event> :: <status byte> <data> | <data>
<status byte> :: 80:EF
<data> :: 00:7F | 00:7F <data>
<sysex event> :: F0 <var data> | F7 <var data>
<var data> :: <varnum> 00:FF | <var data> 00:FF
<meta-event> :: FF <type> <var data>
<type> :: 00:7F

Figure 5 — Partial BNF for SMF Format

Figure 5 gives a fairly complete BNF grammar for standard MIDI files. In this grammar, double
quote marks ‘‘"’’ denote ascii quantities, square brackets ‘‘[]’’ denote two-byte quantities, double square

3 This can only be viewed as a way of saving space in stored files since timing bytes are never transmitted in the
MIDI stream and even if they were, TCIP codes, by definition, only occur when no other data is being transmit-
ted.
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brackets ‘‘[[]]’’ denote four-byte quantities, unenclosed hexadecimal numbers denote one-byte quantities,
and numbers separated by a colon ‘‘:’’ denote ranges. The <varnum> construct is a way of encoding
unbounded numbers that the SMF specification calls ‘‘variable-length quantities.’’ In these, values are rep-
resented with 7 bits per byte, most significant bits first. All bytes except the last have bit 7 set. The <var
data> construct is simply a <varnum> byte count followed by that many data bytes.

SMF files consist of ‘‘chunks’’. Each chunk is a sequence of data bytes with a header that identifies
the chunk type and length. The SMF specification includes two chunk types: header and track.

Header chunks give global information about the file. <format> indicates whether there is more than
one track data chunk and whether multiple track data chunks are sequential or simultaneous; <ntrks> is the
number of track data chunks; and <div> specifies the units for the time-tags in the track data (either in parts
of a quarter note or seconds).

Track data chunks consist of a stream of time-tagged events. The ev ents can either be MIDI channel
ev ents, system exclusive events, or SMF meta-events. MIDI channel events and system exclusive events
are as defined in the MIDI spec [MIDI89], whereas meta-events are new. There are 128 possible meta
ev ents, 15 of them are defined in [MIDI88].

00 02 [[0:65535]] Sequence Number

01 <var data> Te xt Event

02 <var data> Copyright Notice

03 <var data> Sequence/Track Name

04 <var data> Instrument Name

05 <var data> Lyric

06 <var data> Marker

07 <var data> Cue Point

20 01 00:255 MIDI Channel Prefix

2F 00 End of Track

51 03 [[[0:16777215]]] Set Tempo

54 05 00:17 00:3B 00:3B 00:1E 00:63 SMPTE Offset

58 04 00:FF 00:FF 00:FF 00:FF Time Signature

59 02 -7:07 00:01 Ke y Signature

7F <var data> Sequencer-Specific Meta Event

Since these meta-events appear following a time-tag, they hav e a location in time. This gives a tem-
poral meaning to events such as ‘‘End of Track’’ beyond the (redundant) information that no more track
data will appear. For more details on any of these meta-events refer to [MIDI88].

3. Ascii Formats

Obviously it would be arduous in the extreme to enter a piece of music in any of the binary formats.
Some form of symbolic entry would be much more manageable, if less compact. An ascii representation of
the MIDI or MPU data would be a good starting point. It doesn’t take much imagination to see a parallel
between generating MIDI binary data and generating binary machine code data; in those terms, we’re talk-
ing about using an assembler.

We describe a simple music assembler in the section on ‘‘MA’’ format. Such an encoding format,
because it converts human-readable ascii entities to compact binary entities on a one-to-one basis, is neces-
sarily less dense than the output it generates, but it is completely general in that any possible binary output
can be specified. As we move to higher levels of abstraction, the symbolic form becomes more dense and
the output becomes less general. With these ‘‘higher-level’’ languages it is important to target the specific
problem domain so that the smaller range of possible outputs match those required. Several specification
formats, each targeted for a specific domain, are presented here.
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Some constructs are common to all of the little languages; these have been separated out and imple-
mented by a music preprocessor called mpp. Sev eral keywords appear in many but not all of the languages
and may have different meanings in each language. To sav e space (and tedium), when a keyword appears
for the first time it will be explained fully; later uses of it will only explain the differences. Comment lines,
for instance, are described under MPP and not mentioned again. Appendix A is a table showing all the
keywords and the places in which they are used.

Our description of ascii formats will start with the preprocessor, mpp, then go on to the simple
assembler followed by the other formats/programs.

3.1. MPP

The program mpp implements ascii data file control constructs used to specify logical sections,
repeats, etc. in a piece of music. Input data lines are passed to the output as specified by control lines (see
below). Five functions are provided by mpp: comment stripping, conditional inclusion of sections, looping
over repeats, defined symbol replacement, and skipping (ignoring) input.

The −c option inhibits stripping comment lines and blank lines from the input. The default action is
to strip out all lines beginning with ‘‘# ’’ (i.e. sharp sign followed by a space) and all lines consisting of
just a newline character.

The command line −s argument can be used to specify which ‘‘section’’ or ‘‘sections’’ will be gener-
ated; Sections may be numbered with arbitrary non-negative integers. Note that a series of sections can be
generated by specifying a list of section numbers. Section numbers may be separated by commas or blanks
(requiring quoting in the shell); ranges of section numbers are specified by the first and last section numbers
(inclusive) separated by a hyphen.

Control lines consist of one or more fields. A field is either a sequence of non-whitespace characters
separated from others by whitespace, or two or more such sequences enclosed in double quotes ("). Control
lines begin with a keyword field and may contain one or more argument fields. Control lines begin with a
keyword and may contain arguments separated by whitespace. Any input line not recognized as a control
line is considered a data line and is passed through unchanged. The various control line formats and their
meanings are:

# anything
Any line beginning with a sharp sign (a.k.a. ‘‘number sign’’, ‘‘pound sign’’, ‘‘octothorpe’’, ‘‘hash
mark’’, ‘‘scratch mark’’, or ‘‘the bottom right button on a touch-tone keypad’’) followed immediately
by a <space> or <tab> character is considered a comment and is not passed through to the output
unless the −c option has been specified (see above).

#ALLRPTS
The following input is applicable to all repeats at the current nesting level (the default). The ALL-
RPTS control is not used to end repeats, ENDRPT (below) does that.

#ALLSECTS
The following input is applicable to all sections (the default). The #ALLSECTS control can be used
to end sections started by #NOTSECT and #ONLYSECT (below).

#DEFINE symbol value
Replace all occurrences of the first (symbol) field with the contents of the second (value) field.
Defined symbols are replaced immediately after the line is read and before any other processing.
Replacements will only take place if the entire field in the file matches the symbol field. Forward ref-
erences are permitted.

#DOSECT # [#] . . .
Act as if the following arguments had appeared prefixed with -s on the command line. This functions
much like a subroutine call. The following three command lines are equivalent: ‘‘#DOSECT 1 2 3’’,
‘‘#DOSECT 1-3’’, ‘‘#DOSECTS 1,2-3.’’ DOSECTs may be nested, but beware of recursion.

#ELSE
See IFNEXT, below.
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#ENDIF
See IFNEXT, below.

#ENDRPT
End the current set of repeats and unstack one level of repeat nesting.

#ENDSKIP
See SKIP, below.

#IFNEXT # [#] . . .
The following arguments are section numbers. The data between an IFNEXT and an ENDIF or
ELSE will be included in the output if one of the specified sections will be the next one output. This
is often a convenient way to specify first and second endings that depend on which section will fol-
low. When an ELSE is encountered it negates the result of the preceding IFNEXT test. IFNEXTs
may not be nested, thus there is no ELIF construct.

#INCLUDE
Interpolate the contents of the named file (the argument) here. The file will not be read if mpp is cur-
rently skipping input because of section, repeat, or skip requirements; (thus control lines in the
included file that might logically end the skipping will not do so).

#NOTRPT # [#] . . .
The following input should appear in all repeats (at the current level of repeat nesting) except those
listed as arguments.

#NOTSECT # [#] . . .
The following input should appear in all sections except those named in the arguments.

#ONLYRPT # [#] . . .
The following input should only appear in those repeats (at the current level of repeat nesting) listed
as arguments.

#ONLYSECT # [#] . . .
The following input should only appear in those sections listed as arguments.

#REPEAT #
Begin a repeated section (ended by a matching #ENDRPT). The section will be included the number
of times specified as an argument. Repeated sections may be nested up to 8 deep.

#SKIP
Any data or controls between this and the first ENDSKIP encountered are ignored. SKIP/ENDSKIP
may not be nested and take precedence over all other controls. This is largely a debugging aid.

The order of precedence (high to low) among the various control lines is: SKIP/ENDSKIP, ALL-
SECT/NOTSECT/ONLYSECT, IFNEXT/ELSE/ENDIF, REPEAT/ALL-
RPT/NOTRPT/ONLYRPT/ENDRPT, followed by all others. Pairs from one group should not span mem-
bers of a group with higher precedence; e.g. it is a mistake to hav e NOTSECT apppear between REPEAT
and ENDRPT.

The example in Figure 6 demonstrates the use of the repeat and section controls. Mpp is commonly
used as part of a pipeline of commands. In makefiles or shell command files, the section(s) argument is

FOOSECTS=-s0-2,5,3,0-2,4
foo: foo.b.tab foo.g.gc foo.v.m

mpp $(FOOSCTS) foo.b.tab | tab2mpu >bass
mpp $(FOOSCTS) foo.g.gc | gc2mpu >guitar
mpp $(FOOSCTS) foo.v.m | m2mpu >voice
merge bass guitar voice >$@

Figure 7 — Makefile Fragment Using MPP

often defined separately so that it can be specified in just one place and used in many. Figure 7 shows part
of a Makefile used to assemble a piece. After ‘‘make foo’’ has been executed, the file ‘‘foo’’ will contain
the merged MPU data for sections 0,1,2,5,3,0,1,2,4 (in that order) from the various source files.
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% cat /tmp/x % mpp -s0,2,1 /tmp/x % mpp -s1,2 /tmp/x
a a a  a a a  f f f f f f f f
#NOTSECT 1 b b b b  b b b b
b b b b  c c c c c c c c c c
#REPEAT 3 d d d d d d  d d d d d d
c c c c c  c c c c c  c c c c c
#NOTRPT 2 c c c c c  c c c c c
d d d d d d  d d d d d d  d d d d d d
#ENDRPT e e e e e e e  e e e e e e e
e e e e e e e  f f f f f f f f f f f f f f f f
#ALLSECTS b b b b  g g g g g g g g g
f f f f f f f f  c c c c c
#ONLYSECT 2 d d d d d d
g g g g g g g g g  c c c c c

c c c c c
d d d d d d
e e e e e e e
f f f f f f f f
g g g g g g g g g
f f f f f f f f

Figure 6 — Example of Sections and Repeats with MPP

3.2. MA Format

MA format started as a disassembled listing of MPU format. The program da reads MPU data and
produces an ascii version with annotation. Figure 8 shows the MA data for the familiar Westminster Cathe-
dral half-hour chime sequence followed by a single super ‘‘bong’’ (normally the bong would not follow the
sequence rung on the half-hour, but its inclusion gives a pleasant resolution and the hour sequence would
0 98 3e 40 ;  0.000 0 kon [ 62]=64 D3 key on
c 3e 0 ; 0.100 1 koff [ 62]=0 D3 key off
e4 42 40 ; 2.000 2 kon [ 66]=64 F#3 key on
c 42 0 ; 2.100 3 koff [ 66]=0 F#3 key off
e4 40 40 ; 4.000 4 kon [ 64]=64 E3 key on
b 40 0 ; 4.092 5 koff [ 64]=0 E3 key off
e5 39 40 ; 6.000 6 kon [ 57]=64 A2 key on
c 39 0 ; 6.100 7 koff [ 57]=0 A2 key off
e4 3e 40 ; 12.000 10 kon [ 62]=64 D3 key on
c 3e 0 ; 12.100 11 koff [ 62]=0 D3 key off
e4 40 40 ; 14.000 12 kon [ 64]=64 E3 key on
c 40 0 ; 14.100 13 koff [ 64]=0 E3 key off
e4 42 40 ; 16.000 14 kon [ 66]=64 F#3 key on
c 42 0 ; 16.100 15 koff [ 66]=0 F#3 key off
e4 3e 40 ; 18.000 16 kon [ 62]=64 D3 key on
c 3e 0 ; 18.100 17 koff [ 62]=0 D3 key off
e4 32 40 ; 24.000 20 kon [ 50]=64 D2 key on
0 26 40 ;  24.000 21 kon [ 38]=64 D1 key on
c 32 0 ; 24.100 22 koff [ 50]=0 D2 key off
0 26 0 ; 24.100 23 koff [ 38]=0 D1 key off

Figure 8 — MA Format Listing of Westminster Chimes

have taken too much space). Everything to the left of the semicolon is MPU data, everything to the right is
explanatory comment. The column of decimal numbers gives the absolute timing in beats (quarter notes).
Audio example 3 on the compact disc was generated from this data.
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There are two ways to turn MA format into MPU format. The program ra (re-assembler) inverts the
effect of da, but since the same information is multiply imbedded in the MA output (appearing on both
sides of the semicolon in one form or another) a decision must be made as to which value to use. Ra
chooses to believe all the information to the left of the semicolon except the time-tag value; this it recalcu-
lates from the absolute timing value to the right of the semicolon. The logic for this will be explained later.
The program axtobb (ascii hex to binary bytes) inverts the effect of da by only paying attention to the data
to the left of the semicolon (as a matter of fact, axtobb treats any characters other than 0-9, a-f, A-F, TAB,
and SPACE as the start of a comment that extends to the end of the line).

When a small change is needed in an MPU file, the simplest approach is to convert the file to MA
format, edit the ascii file with any text editor, and then convert the file back with either ra or axtobb as
appropriate. The most common editing operations are deleting and inserting commands. For these opera-
tions ra will usually be the reassembler of choice since the absolute time values on unaffected lines would
still be accurate. In situations where whole sections need to be moved forward or backwards in time,
changing the first and last time-tags and then reassembling with axtobb is considerably easier than changing
the time values on every affected line.

In much the same way that we can use existing ascii text editors to manipulate MPU files by convert-
ing to and from MA format, other ascii software tools can be used. For example, to make a copy of the file
‘‘foo.mpu’’ with all the program change (voice change) commands deleted we might search for the
mnemonic that da uses for program change ‘‘progc’’:

da foo.mpu | grep -v " progc " | ra >foo.mpu.copy
Similarly we could try to delete all key-on and key-off data for channel three with:

da foo.mpu | grep -v "ˆ.[0-9] [89]2 " | ra >foo.mpu.copy
However, if foo.mpu contained commands using running status they would be left in and would appear on
some other channel (or no channel at all). The command ‘‘midimode’’ (and many others) can be used to
ensure each command has a status byte, then a pipeline like:

midimode <foo.mpu | da | grep -v "ˆ.. [89]2 " | ra >foo.mpu.copy
would work. As it turns out, there are specific commands to perform most of these editing operations on
the MPU data directly, but when you come up with a need that nothing else fills. . .

There are other situations in which MA format can be particularly useful; you may need a graceful
way to create some MPU commands inside a command stream. For instance, the following line could
appear either in a shell command file or in a makefile;

(echo "0 c0 4 0 b0 4 0" | axtobb; cat foo.mpu) >foonew.mpu
This line will create the file ‘‘foonew.mpu’’ containing the commands to select voice 5 on channel 1 and
then set the foot controller to 0 on that channel, followed by the contents of foo.mpu. Another use for MA
format is as the output of a program written in a restricted programming language, e.g. awk or the com-
mand line interpreter. MPU data contains many zeroes, as far as awk is concerned these are NULs; NULs
are used to terminate strings and cannot be generated as output. Figure 9 shows an awk program that uses

% cat x.awk
BEGIN { for (i=0; i<128; i++) { printf "0 80 %x 00, i } exit }
% awk -f x.awk | axtobb >alloff.1

% cat x.sh
for s in 0 1 2 3 4 5 6 7; do

for u in 0 1 2 3 4 5 6 7 8 9 A B C D E F; do
echo "0 90 $s$u 0" | axtobb

done
done
% sh x.sh >alloff.1

Figure 9 — Using MA Format to Turn All Notes Off

MA format to generate all 128 possible key-off commands on channel 1 and a shell program that does a
slightly different version of the same thing.
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The MA format is general in that it can express anything that MIDI or MPU format can express; its
strength is that it is composed of ascii characters and can be generated by even the simplest program (or
language). Its biggest drawback is that it is unnecessarily detailed for many uses and not easy to decipher.
It only ‘‘knows about’’ MIDI and MPU codes, it doesn’t ‘‘know’’ anything about music.

3.3. The MUTRAN Family

Tw o recent languages derive many aspects of their design from a music specification language and
compiler written (by the current author) nearly a quarter of a century ago. This language, called
‘‘MUTRAN,’’ has survived in one form or another with little change.

One of the fundamental problems that any scheme for transcribing music on a computer must solve is
that of specifying pitches and durations in an easily editable form Aside from being representable in bits
and bytes, the encoding needs to be easy to learn, compact, and comprehensive. Even the standard, hand-
written or printed music notation scheme only partly meets these goals. It has a long history however, and is
already understood by most people interested in reading or writing music. Unfortunately, normal music
notation is a continuous, two-dimensional notation and is not readily converted to the quantized, linear form
that digital computers impose. Rather than basing its representation on the written score, MUTRAN took
as its model the musician’s verbal description of a piece; a description that is inherently linear (although not
necessarily quantized). MUTRAN’s character-based conventions for specifying pitches and durations,
aside from being representable in bits and bytes, are easy to learn and compact (but limited). In an attempt
to remedy its limitations, other languages have adopted and expanded on MUTRAN notation.

The following three sections describe the original mutran and its direct descendants ‘‘Mut’’ and ‘‘M.’’
Later sections will also refer back to the note formats described here.

3.3.1. MUTRAN

MUTRAN format got its name from a program of the same name written in the mid-1960s by the
current author. The MUTRAN program read music scores encoded on punched cards and produced a pro-
gram that, when executed, would cause the cpu (an IBM 1620) to create radio frequency interference that,
in turn, would produce music on a nearby AM radio. Recognizing this program to be a compiler, the author
named it after the only other compiler he had ever used − FORTRAN; (MUTRAN itself was written in
machine language; the author had not yet encountered assemblers).

Although the MUTRAN program has not survived, the data encoding scheme has, and with minor
revisions has been used as a basis for several other formats. This section is provided so description of other
formats may refer to it to define the basic MUTRAN characteristics, allowing their descriptions to focus on
particular aspects or differences. Because of the absence of any known MUTRAN compiler, this descrip-
tion is, for the most part, in the past tense.

MUTRAN data consisted of data records and control records. Data records consisted of a sequence
of encoded notes, with an arbitrary number of notes allowed on each 80-column card. Typically, each data
record contained a phrase, measure, half-measure, or other consistent time length.4 Control records began
with an asterisk in column 1 followed by a keyword and other parameter fields.

Data records contained notes with time value information, separated by blanks. MUTRAN notes
were encoded according to the simple BNF grammar listed in Figure 10. Note that all alphabetic characters
were upper-case; keypunches only had upper case. Octave numbers were the so-called ‘‘scientific’’ num-
bering; ‘‘C4’’ for middle C and ‘‘B3’’ for the pitch one half-step below it. The time values (<tval>s) repre-
sented Whole, Half, Quarter, Eighth, Sixteenth, Thirty-second, and sixty-fourth (Frill) notes, respectively.

There were relatively few control record keywords. There were TITLE and COMMENT records, but
they were ignored.5 QUARTER records specified the number of quarter notes per minute (in the same way

4 This rather fastidious convention had some serendipitous repercussions. The musical score for an extremely
abstract movie was produced by shuffling a deck of cards containing C.P.E. Bach’s Solfegietto and playing the
resulting jumble of phrases. The sound track was a great success.
5 After all, what’s a language without comment records?
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<Mnote> :: <pitch><duration>
<pitch> :: <notename><octave> | <rest>
<notename> :: <letter> | <letter><accidental>
<letter> :: ’A’ | ’B’ | ’C’ | ’D’ | ’E’ | ’F’ | ’G’
<accidental> :: <sharp> | <flat>
<sharp> :: ’+’ | ’+’ <sharp>
<flat> :: ’−’ | ’−’ <flat>
<rest> :: ’R’
<octave> :: ’0’ | ’1’ | ’2’ | ’3’ | ’4’

| ’5’ | ’6’ | ’7’ | ’8’ | ’9’
<duration> :: <tval> | <tval><tmod>
<tval> :: ’W’ | ’H’ | ’Q’ | ’E’ | ’S’ | ’T’ | ’F’
<tmod> :: <dot> | <let>
<dot> :: ’.’ | ’.’ <dot>
<let> :: ’T’ | ’3’ | ’5’ | ’7’ | ’9’

Figure 10 — Ancient MUTRAN Note Grammar

that metronomes are marked). The TIME control record allowed global scaling of tempo; the nominal
TIME value was 100 and setting it to 200 played the piece in half the time. Finally, MUTRAN needed to
know when to stop, and the END record provided that information.

The first measure of J, S, Bach’s Well-tempered Clavier, I, Prelude no. 11 (in 12/8 time) contains two

*TITLE J.S. BACH WELL−TEMPERED CLAVIER, I, PRELUDE NO. 11
*COMMENT UPPER PART
F5S C5S A4S G4S A4S C5S F4S A4S C5S E−5S D5S C5S
D5S B−4S F4S E4S F4S B−4S D4S F4S A4S C5S B−4S A4S
*COMMENT LOWER PART
F3E A3E C4E A3E F3E A3E B−3E D4E B−3E F2Q RE

Figure 11 — Sample of Early MUTRAN from the Well-tempered Clavier

voices, Figure 11 is a straight-forward MUTRAN version. MUTRAN, in an effort to reduce keypunch
effort (and to economize on cards), was content to let everything but the <notename> default to the previ-

*TITLE JSBACH WELL−TEMP−CLAV, I, NO 9
*COMMENT UPPER PART
F5S C A4 G A C5 F4 A C5 E− D C D B−4 F E F B− D F A C5 B−4 A
*COMMENT LOWER PART
F3E A C4 A3 F A B− D4 B−3 F2Q RE

Figure 12 — Denser Sample of MUTRAN from the Well-tempered Clavier

ous value, so the same two parts would more likely have been encoded as in Figure 12. The original
MUTRAN compiler only handled single melodic lines; there’s only so much you can do with stray radio
interference from a machine whose memory cycle time was about 5 microseconds. However MUTRAN
made a hit on a local TV news program when it played the Bach double violin concerto with a human vio-
linist. The violinist later commented that MUTRAN ‘‘kept unrelenting time’’; it was probably the nicest
thing she could think of to say.

3.3.2. MUT

MUT format (sometimes called ‘‘modern mutran’’) is a recent version of the ancient MUTRAN lan-
guage described above. This format is a very dense, easy to read notation scheme for instrumental music
(there is no provision for lyrics, see ‘‘M’’ format for that). MUT is easy to transcribe and programs exist to
convert it into data that can be played directly on most sound synthesizers.
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Modern mutran format (still) consists of data lines and control lines. Each data line begins with an
instrument or voice name and contains a sequence of notes for just that instrument. Control lines begin
with a sharp sign (#) followed by a keyword and, in some cases, one or more parameters. Control lines
specify control changes to take place after preceding lines and before following lines of data. The data
lines are arranged such that time proceeds left-to-right, top-to-bottom (i.e. ‘‘reading order’’) independently
for each instrument (unless #BAR or #SYNC controls intervene, see below). Most programs will consider
it an error if the accumulated durations of all voices are not equal when a #BAR control is encountered.

MUT notes are encoded according to a simple BNF grammar similar to that for MUTRAN. Figure
<Mnote> :: <pitch><duration>
<pitch> :: <notename><octave> | <rest>
<notename> :: <letter> | <letter><accidental>
<letter> :: ’A’ | ’B’ | ’C’ | ’D’ | ’E’ | ’F’ | ’G’
<accidental> :: <sharp> | <flat>
<sharp> :: ’#’ | ’#’ <sharp>
<flat> :: ’b’ | ’b’ <flat>
<rest> :: ’R’
<octave> :: ’-2’ | ’-1’ | ’0’ | ’1’ | ’2’ | ’3’

| ’4’ | ’5’ | ’6’ | ’7’ | ’8’
<duration> :: <tval> | <tval><tmod>
<tval> :: ’w’ | ’h’ | ’q’ | ’e’ | ’s’ | ’t’ | ’f’
<tmod> :: <dot> | <let>
<dot> :: ’.’ | ’.’ <dot>
<let> :: ’t’ | ’3’ | ’5’ | ’7’ | ’9’

Figure 13 — Modern Mutran Note Grammar

13 gives the complete grammar. A quick comparison with the grammar in Figure 10 will reveal that this
format has not changed very much in twenty years.6

Octave numbers are as defined earlier in the MIDI section; ‘‘C3’’ is middle C and ‘‘B2’’ is one half-
step below it. The time values (<tval>s) represented whole, half, quarter, eighth, sixteenth, thirty-second,
and sixty-fourth (frill) notes, respectively. The time modifiers have the standard meanings. A modifier of
‘‘.’’ multiplies the duration by 1.5; ‘‘..’’ multiplies the duration by 1.75, etc. A modifier of ‘‘t’’ or ‘‘3’’ mul-
tiplies the duration by 2/3; ‘‘tt’’ or ‘‘33’’ multiplies the duration by 4/9, etc. Modifiers of ‘‘5’’, ‘‘7’’, or ‘‘9’’
multiply the duration by 4/5, 6/7, and 8/9, respectively (this should be extended to allow modifiers of the
form ‘‘m:n’’ such that ‘‘t’’ is equivalent to ‘‘3:2’’).

Data lines must begin with a white-space delimited name that has been defined by appearing in the
most recent #VOICES control line. Following the name are an arbitrary number of notes in MUT format
with ‘‘|’’ (vertical bar) characters interspersed to indicate measure boundaries (‘‘bar lines’’). The effect of a

bass A0q A1q C#1q C#2q | D1q D2q B0q E1q |

bass A0q A1q C#1q C#2q
#BAR
bass D1q D2q B0q E1q
#BAR

Figure 14 — Equivalent MUT Representations

vertical bar is identical to that of the #BAR control except no synchronization checking is done. Thus, the
two examples in Figure 14 are truly identical (since a single voice can’t hav e synchronization problems
with itself).

MUT format allows control lines to be defined as needed; many of them will be ignored by any par-
ticular program. Commonly used control keywords include:

6 To paraphrase Garrison Keillor: ‘‘The format that time forgot and that the decades cannot improve.’’
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#ARTIC #.# [#.#] . . .
The ARTIC control specifies the articulation with which the notes are to be played. An argument of
1.0 makes the notes connected (legato), while an argument of 0.25 makes the notes sound for only
the first quarter of their time value (staccato). If there are fewer arguments than voices, the last argu-
ment will be used for the extra voices; thus a single argument will set the articulation for all the
voices, but they can all be set individually if necessary. The default value is usually 0.8 ( for all
voices).

#BAR
A measure ends here. No arguments are used. In scoring programs, a bar line is generated; in pro-
grams that produce MPU data, a Timing Clock With Measure End code is generated. In most pro-
grams, a check is made to ensure that all voices are in synchronization (have equal cumulative dura-
tions).

#CHAN # [#] . . .
This control assigns channels to the various voices (default is channel 1). A decimal number argu-
ment in the range 1 to 16 is expected for each voice.

#METER # #
The METER control has two arguments that are the "numerator" and "denominator" (respectively) of
the time signature. For example, ‘‘METER 3 4’’ would specify waltz time. These are used primar-
ily by scoring programs.

#SOLO v1 [v2] . . .
This control specifies coarse volume information for each voice. A single character argument, cho-
sen from the following list, is expected for each voice (separated by whitespace):
− This voice is silent (key velocity = 0)
S This voice is soft (key velocity = 21)
M This voice is of medium volume (key velocity = 64)
L This voice is loud (key velocity = 106)
# A decimal argument selects velocity explicitly [0..127]
Note that S, M, and L divide the velocity range into three roughly evenly spaced levels, while - mutes
the voice entirely. The name SOLO was chosen as a reference to the "solo" buttons on a mixing con-
sole.

#SYNC
When this control is encountered, all voices will be synchronized, aligning with whichever voice has
the greatest cumulative duration at the moment. Thus, following a section with particularly tricky
timing by a #SYNC control will assure synchronization (before the #BAR check occurs).

#TEMPO #
The TEMPO control expects a single, numeric argument representing the number of quarter notes per
minute (related to M.M.).

#TITLE the title of the piece
The TITLE control is used by programs that give some special handling to the title of the piece (e.g.
scoring programs).

#TRANS # [#] . . .
The TRANS control is used to specify transpositions for scoring. An argument is required for each
voice. The transpositions are expressed in scale steps; thus -7 would transpose down an octave.

#VOICES name1 [name2] . . .
The VOICES control defines the number of voices and associates a name with each one. Each voice
is represented by an argument that can be any combination of characters. Whereas scoring programs
will use the names provided here when printing part scores, other programs may need this control to
determine how many voices are involved. Therefore, this control should precede all data and any
controls that expect an argument per voice.

It should be noted that the music preprocessor, mpp, defines keywords to handle conditional inclusion
of sections, repeats, and file inclusion for languages like MUT. See the section on MPP.
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#TITLE J.S. Bach Well−Tempered Clavier, I, Prelude no. 11
#VOICES left right
# first measure
right F4s C4s A3s G3s A3s C4s F3s A3s C4s Eb4s D4s C4s
left F2e A2e C3e A2e F2e A2e
right D4s Bb3s F3s E3s F3s Bb3s D3s F3s A3s C4s Bb3s A3s
left Bb2e D3e Bb2e F1q Re
#BAR

Figure 15 — Sample of Modern Mutran from the Well-tempered Clavier

The first measure of Prelude #11 in the Well-Tempered Clavier could be expressed in modern mutran
as shown in Figure 15 (audio example 4 on the compact disc). The choice of ‘‘left’’ and ‘‘right’’ as voice
names is purely arbitrary. Voice names may contain any non-whitespace characters and may be up to 31
characters long although it is common to keep them shorter than a tab stop (8 characters).

echo "#VOICES HIHAT TIMBALE SNARE BD G1 G2 G3 BASS"
echo "#CHAN 2 2 2 2 3 3 3 15"
echo "#SOLO 7 5 7 8 5 5 5 4"
echo "#ARTIC 0.1 0.1 0.1 0.1 0.2 0.2 0.2 1"
for key in E A E A A A E A; do

echo "HIHAT Rq A2h A2q"
echo -n "TIMBALE "
pick1 -n "Rh" "Rh" "Rh" "C4h" "Rq C4qt C4et" "C4q Rqt C4et"
pick1 -n " C4q" " C4qt C4et" " C4qt C4st C4st" " Rqt C4st C4st"
pick1 " Rq" " Rq" " C4q" " C4qt C4et" " Ret C4et C4et"
echo -n "SNARE "
pick1 "Rh Db2h" "Rh Db2h" "Db2h Db2h" "Rh E2h" "Rh E2h" "E2h E2h"
echo -n "BD "
pick1 "Rh A1h" "Rh A1h" "Rh Ab1h" "Rq Rqt Ab1et Ab1h"
if [ "$key" = "E" ]; then

echo "G1 Rq B2qt B2et Rq E3qt E3et"
echo "G2 Rq E3qt E3et Rq G#3qt G#3et"
echo "G3 Rq G#3qt G#3et Rq B3qt B3et"
echo -n "BASS E3qt "
pick1 "E3et E3qt E3et E2qt Rht" "E2q E3et E2q Rq"

else
echo "G1 Rq C#3qt C#3et Rq B2qt B2et"
echo "G2 Rq E3qt E3et Rq D#3qt D#3et"
echo "G3 Rq A3qt A3et Rq F#3qt F#3et"
pick1 -n "BASS Rq A2et " "BASS Rq A2et " "BASS A2ht "
pick1 "Ret C#3et D#3q B2q" "A3et A2et B2q D#3q"

fi
echo "#BAR"

done
echo "HIHAT C3w:TIMBALE E2w:BD A1w:BASS E2w:#SYNC" | tr ":" " 12"

Figure 16 — Shell command file to generate Reggae in Modern Mutran

Figure 16 shows a shell command file that generates nine measures of reggae rhythm section consist-
ing of guitar on channel 3, bass on channel 15, and drums on channel 2. The output is MUT data. The
command ‘‘pick1’’ simply chooses one of its arguments (randomly) to output. The argument will be fol-
lowed by a line feed unless the ‘‘-n’’ option is specified. By specifying alternative material for the timbale,
snare drum, and bass parts we’ve added enough variation to break up the potential repetitiveness while
ensuring that all possible sequences will sound good. Audio example 5 on the compact disc is two
sequences generated by this shell file ( it’s hard to appreciate how effective this little shell program is with-
out hearing the results). By lengthening the list in the ‘‘for key in . . .’’ line, longer pieces can be
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composed. Adding more clauses to the ‘‘if’’ statement would allow greater harmonic variety. If you
added if clauses for many other chords and changed the ‘‘for key in . . .’’ line to read:

for key in $*; do
you would have a little language of your own for generating reggae accompaniments.

3.3.3. M

M format is an earlier variant of MUTRAN format. It is particularly well suited to notation of multi-
part scores with lyrics (e.g. four-part harmonizations) and is generally designed to be easy for humans to
read and edit, although it is not as dense as MUT format. Filters exist to produce printed scores (both full
and individual parts) from M format, and to play M files on MIDI-equipped sound synthesizers (as well as
some other, non-MIDI devices).

Like MUT format, M format consists of control lines and data lines; control lines comprise an initial
keyword followed by arguments. The control keywords are almost identical to those in MUT; they are:

#ARTIC #.# [#.#] . . .
Same as in MUT (p. 15).

#BAR
Same as in MUT (p. 15).

#CHAN # [#] . . .
Same as in MUT (p. 15).

#CPQ #
This control expects a single argument that sets the number of "clocks per quarter" note. This value
must be chosen such that every note encountered can be represented by an integral number of clocks;
e.g. the presence of eighth notes requires that CPQ be a multiple of 2; dotted quarters require CPQ to
be divisible by 3; eighths and dotted quarters require CPQ to be a multiple of 6, etc. ☞ Fortunately
this complicated control is only required for output to Votrax PSS speech synthesizers and is ignored
by all other known programs.

#METER # #
Same as in MUT (p. 15).

#SOLO v1 [v2] . . .
Same as in MUT (p. 15).

#TEMPO #
Same as in MUT (p. 15).

#TITLE the title of the piece
Same as in MUT (p. 15).

#TRANS # [#] . . .
Same as in MUT (p. 15).

#VOICES name1 [name2] . . .
Same as in MUT (p. 15).

In addition to these, programs may define controls for their own use. It is recommended that such
controls consist of the number sign followed immediately (with no intervening whitespace) by upper-case
characters. Mpp, the music pre-processor defines several useful macro controls; see the description of MPP.

Unlike MUT format, data are arranged such that time proceeds downward with each part represented
by a column of data. The first column is the lyric and either contains one of the special symbols ‘‘−’’ or
‘‘/’’, or any string of characters containing no whitespace. ‘‘−’’ is understood by most programs to be a
placeholder and indicates that there is no associated lyric and often no sound at all (rests are a good exam-
ple). ‘‘/’’ is understood by most programs to be a placeholder and indicates that although there is no associ-
ated lyric there is some sound produced (e.g. instrumental sounds, especially drums). All columns but the
first contain notes encoded in the format used by modern mutran (described under ‘‘MUT’’) with ‘‘-’’ added
as a silent (durationless) placeholder.
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#TITLE Teddy Bear’s Picnic
#METER 4 4
#VOICES Bass Bari Tenor Soprano
#TRANS 7 7 0 0
#CHAN 1 2 3 4
#SOLO 7 7 7 8
Pic D3q D3q D3q D3q
-nic D3q D3q G3q B3q
time C#3q E3q G3q A#3q
for D3q G3q G3q B3q
#BAR
ted C3qt E3qt G3qt E4qt
-dy B2et E3et G3et B3et
bears G2q G3q B3q D4q
- Rqt Rqt Rqt Rqt
#SOLO 5 5 5 6
the D3et D3et G3et B3et
lit C#3qt E3qt G3qt A#3qt
-tle D3et G3et G3et B3et
#BAR
ted C3qt E3qt G3qt E4qt
-dy B2et E3et G3et B3et
bears G2qt G3qt B3qt D4qt
are G2et D3et G3et B3et
hav C3et G3et C4et E4et
-ing D3et F#3et B3et D4et
a B2et D3et G3et B3et
love C#3qt D#3qt F#3qt A#3qt
-ly D3et E3et G3et B3et
#BAR
#SOLO 6 6 6 8
day F#3qt A3qt B3qt D4qt
to F3et G#3et A#3et Db4et
-day E3h G3q B3q C4h
-ay - F#3q A3q -
- Rq Rq Rq Rq
#BAR

Figure 17 — Example of M Format

Figure 17 is the beginning of the file ‘‘tbp.m’’ which contains a simple example of M format. Audio
example 6 on the compact disc was generated from tbp.m. The control lines at the beginning establish gen-
eral parameters for the various programs that may be used to process the file. Scoring programs will title
the piece as indicated, assign names to the four parts, and show the bass & bari(tone) voices transposed up
an octave (7 steps). Programs that generate sound will set the tempo to 150 beats per minute, make the
soprano voice louder than the rest, and put each voice on the specified MIDI channel (if MIDI or MPU out-
put is being generated).

3.4. DP

DP format allows particularly dense encoding of drum rhythms in a form that is similar to that com-
monly used by drummers. As a result it is easy to read. It can be edited on any ascii terminal and programs
exist to play it on most drum machines or synthesizers that can make drum sounds.

Drum patterns are commonly printed in a notation loosely based on common practice notation ("nor-
mal" music notation). A staff line is provided for each instrument and the usual shapes are used to denote
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time values with dynamic markings above the staff or below the notes.

To adapt this format for computer use, the dynamic markings replace the notes and spacing indicates
timing. This works well for percussion instruments that ignore note durations (i.e. the time between MIDI
key-on and key-off events), but when this format is used for duration sensitive instruments, it is worth
knowing that durations are set to the current quantum (see #QUANT control, below) multiplied by the cur-
rent articulation (see #ARTIC control, below).

DP control lines include an initial keyword possibly followed by arguments. The control keywords
are:

#ARTIC #.#
Same as in MUT (p. 15) except only one argument is used to set the durations of all notes generated.

#BARLEN #
This control specifies the number of MPU clocks per measure. The default is #BARLEN 480.

#GAIN channel/key multiplier
The GAIN control allows global modification of key velocities on an instrument-by-instrument basis.
The first argument identifies an instrument (see the description of channel/key in the discussion of
data format, below). The second field is a multiplicative factor to be applied to every key velocity for
this instrument. The default value for all possible channel/key combinations is #GAIN chan/key 1.0.

#QUANT timevalue
A single argument specifies the duration associated with each note symbol. The argument may be a
decimal number or one of whole, half, quarter, eighth, or sixteenth. #QUANT 16 makes each note
or rest a sixteenth note long. #QUANT 8 is the default.

#ROLL char vel rate
This control defines special pattern characters to represent multiple drum hits (e.g. for snare rolls).
Three arguments are required. The first is the pattern character being defined; (should not be
0,1,2,3,4,5,6,7,8,9, or -). The second argument is the velocity for the strokes in the roll encoded as
’0’ through ’9’ (see description of data lines). The last argument is the rate at which the strokes
should be repeated, using the same scheme as the argument for #QUANT. For example, the character
’˜’ can be defined to produce thirty-second notes with a MIDI key velocity of 28 by the following:
#ROLL ˜ 2 32

If used in a section with ‘‘#QUANT 8’’ specified, four notes will be generated for each ‘‘˜’’ symbol in
the pattern. The #TUPLE control provides another approach to drum rolls.

#SYNC
The data for each instrument is buffered up as an independent stream with its own clock. Thus, each
instrument can be represented by several consecutive input lines and, when output, all the instruments
will be merged, each starting at time zero (‘‘the beginning’’). Sometimes, however, you wish to flush
the buffering and resynchronize the instrument clocks (e.g. when a piece is too long to fit in the
buffers in its entirety). When the SYNC control is encountered in the input, all buffered data is out-
put and the clocks for all instruments are set to the highest clock value so far. This allows an instru-
ment that only appears late in a piece to be synchronized with the other instruments without having to
be represented by rests throughtout the entire beginning of the piece. It also allows very long pieces
to be processed without overflowing the buffers.

#TUPLE char vel mult
The TUPLE control defines special pattern characters to represent drum hits at a rate faster than the
current #QUANT setting. Three arguments are required. Like #ROLL, the first is the pattern charac-
ter being defined; (should not be 0,1,2,3,4,5,6,7,8,9, or -). Unlike #ROLL, the second argument is the
actual MIDI velocity for the notes, encoded as ’1’ through ’127’. The last argument is the rate multi-
plier for the repeated strokes; if the argument is ‘‘5’’, then five notes will be generated for each sym-
bol. For example, the character ’=’ can be defined to produce notes with a velocity of 56 at double
the current rate with the following line:
#TUPLE = 56 2

If used in a section with ‘‘#QUANT 8’’ specified, two sixteenth notes will be generated for each ‘‘=’’
symbol in the pattern.
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The controls defined for the program mpp are useful in DP files. In particular, the #DEFINE control
can be used to associate symbolic names with channel/key pairs and the #INCLUDE control can be used to
refer to libraries of such symbol definitions.

DP data lines require two fields (separated by whitespace): a channel/key field and a pattern field.
Any further fields are ignored as comments.

The channel/key field defines the instrument to be played and consists of a channel number (in deci-
mal), a slash, and a key number (in hexadecimal, decimal, or as a note name, e.g. ‘‘Eb3’’). 5/0x3d, 5/61,
and 5/C#3 are all equivalent formats for specifying key 6110 on channel 5. This field may be specified
using a symbolic name specified earlier in a #DEFINE line (if mpp preprocesses the file).

The pattern field is formed from the digits ’0’ through ’9’, the character ’−’, and any ‘‘#ROLL’’ or
‘‘#TUPLE’’ pattern characters defined. The digits represent key velocity with the generated velocities
being 1, 14, 28, 42, 56, 71, 85, 99, 113, and 127 (going from ’0’ to ’9’). A minus character, ’−’, represents
silence.

The controls defined for the music preprocessor mpp (see the description of MPP) are useful in DP
files; in particular, the #INCLUDE control can be used to reference sets of drum definitions for specific
drum synthesizers.

#DEFINE Surdo 2/0x32 (TOM2)
#DEFINE Caixa 2/49 (SD2)
#DEFINE Pratos 2/Db3 (CHINESE (cymbal))
#REPEAT 2
# 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
Surdo 70-46--570-46--570-46--570-46--5
2/56 64546454645464546454645464546454 Chocalho (SHAKER)
2/51 7-7-7-77-7-7-77-7-7-7-77-7-7-77- Tamborim (RIM1)
4/71 72267226722672267226722672267226 Pandeiro (TAMBO)
Caixa 63636336363636636363633636363663
4/73 6---6---6--66-6-6---6---6--66-6- Caixeta (TIMBL)
4/75 6-----336-----436-----436-----33 High Agogo (AGOGH)
4/74 --336----6-36-----436----6-36--- Low Agogo (AGOGL)
4/0x4d --7------5--------6------5------ High Cuica (CUICH)
4/0x4c 4---54-4---45-4-4---54-4---45-4- Low Cuica (CUICL)
Pratos 6------------70-6------------70-
#ENDRPT

Figure 18 — DP Format for Samba

Figure 18 is an example of eight measures of a latin samba rhythm (Samba Batucada) coded in DP
format. Note that only four measures are written out; the mpp repeat controls (‘‘#REPEAT 2’’ and
‘‘#ENDRPT’’) are used to double the length. Audio example 7 on the compact disc was generated from
this data. For illustration purposes some of the drums have been defined in mpp #DEFINE lines. Typically,
they would all be defined in a separate file referenced with the mpp #INCLUDE control line. A comparison
with the standard notation for this drum pattern (which covers a full page) [SULSBR82] will demonstrate
the readability of this format.

3.5. SD

Files in SD format contain melodic information in ‘‘scale-degree’’ form. SD format is designed to be
easy for humans to read and edit and is particularly well suited to notation of melodies that only use notes
from a particular 7-note (or fewer) scale. Most tonal (as opposed to atonal) music meets this criterion. It is
common among musicians to describe notes or melodies in terms of scale degrees, partly because of its
compactness (‘‘5’’ is quicker to say than ‘‘B flat’’), partly because its key independence avoids problems for
musicians playing transposing instruments, and partly because it seems more natural to focus on the func-
tion of the note in the key rather than on its absolute pitch. The SD format shares all these advantages.
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SD format consists of control lines and data lines arranged such that time proceeds from left to right
in equal sized steps with each part represented by one or more lines of data. SD control lines comprise an
initial keyword followed by arguments. The control keywords recognized are:

#CODING symbols
The CODING control associates symbols with scale degrees. It defines 21 symbols; 7 for scale
degrees with downward motion guaranteed; 7 for scale degrees with shortest motion guaranteed (the
usual symbols); and 7 for scale degrees with upward motion guaranteed. The default coding defini-
tion is equivalent to: #CODING abcdefg1234567ABCDEFG. Thus ‘‘a’’, ‘‘1’’, and ‘‘A’’ are equiv-
alent except that while ‘‘1’’ will select the root (first degree) of the current scale that is closest to the
last note, ‘‘a’’ will choose the root below the last note, and ‘‘A’’ will choose the root above the last
note. See also the #INIT control and the description of the ‘‘ˆ’’ and ‘‘v’’ data characters (in the dis-
cussion of the note field) for other ways of controlling the direction of motion.

#INIT note [note] . . .
This control specifies the initial pitch associated with each voice in mutran timeless note format,
which consists of a pitch class and an octave number (e.g. ‘‘C3’’ for middle C). Since data in SD for-
mat may specify choosing the direction of motion that yields the shortest jump from the previous
note, there must be a previous note from which to measure. At the beginning of the piece there is no
previous note; #INIT specifies an imaginary previous note. #INIT can also be used in the middle of a
piece to force large jumps up or down (also see the description of the note field, below).

#METER # #
Same as in MUT (p. 15).

#QUANT timevalue
Same as in DP (p. 19).

#SCALE note [note] . . .
The SCALE control defines the pitch classes associated with the (up to) seven scale degrees. It is fol-
lowed by a comma-separated list of pitch classes in either numeric or symbolic form (0 ≡ C, 1 ≡ C#,
. . .  11 ≡ B). The default scale is a C major scale, i.e.: #SCALE C,D,E,F,G,A,B.

#VOICES name1 [name2] . . .
Same as in MUT (p. 15).

In addition, any control line not mentioned above (i.e. a line starting with a number sign followed by
other, non-blank characters) is allowed as part of the input and is passed through to the output unchanged
(thereby allowing controls like #ARTIC, #BAR, #CHAN, #CPQ, #SOLO, #TEMPO, #TITLE, and
#TRANS to be passed to programs that read M format). Further, mpp, the music pre-processor defines sev-
eral useful macro controls; see the MPP description.

SD data lines require two fields (separated by whitespace): a voice name field and a note field. Any
further fields are ignored as comments. The voice name field defines the voice with which to associate the
note field data and consists of a name that must have already appeared in the preceding #VOICES control
line.

The note field is composed of any non-whitespace characters. Specifically these include the symbols
defined in the #CODING control line, the tie character ‘‘(’’, the three special symbols ‘‘|’’, ‘‘ˆ’’, and ‘‘v’’,
and finally, all other non-whitespace characters. The tie character ‘‘(’’ lengthens the previous note by the
QUANT duration. The character ‘‘|’’ is a placeholder and is ignored; unlike any other character, it takes no
time. It is often convenient to use ‘‘|’’ to demarcate measures (for readability). The character ‘‘ˆ’’ revises
the program’s idea of the last note played for this voice upward by one octave, thus ensuring that the next
note will be interpreted an octave higher than it would otherwise. Note, however, that the ‘‘ˆ’’ takes time
and generates a rest. The character ‘‘v’’ revises the program’s idea of the last note played for this voice
downward by one octave, thus ensuring that the next note will be interpreted an octave lower than it would
otherwise. The ‘‘v’’ also generates a rest. All other non-whitespace characters represent rests; the most
common choice is to use minus, ‘‘-’’, but some people prefer the period ‘‘.’’.

Figure 19 is a simple example of a three-voice scale-degree encoded harmony. Audio example 8 on
the compact disc was generated from this data. The comment line gives the chord structure in scale degrees
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#TITLE Departure Tax
#VOICES Paul Peter Scott
#SCALE G,A,B,C,D,E,F#
#INIT F#3 A3 C4
# CHORD 1 . . . 1 . . . 5 . . . 4 . 5 . 5 . . . 5 . . . 1 . . . 4 . 5 . |
Scott 45565(5434516543217-7(7717617(--34454(4323456542311-1(1117617(--|
Peter 23343(3212354321765-5(5565465(--12232(2171234327165-5(5565465(--|
Paul 71111(1757132176542-2(2232132(--57777(6545712175543-3(3332132(--|

Figure 19 — ‘‘Departure Tax’’ in SD Format

(1 ≡ tonic, 4 ≡ subdominant, 5 ≡ dominant) with periods marking the quarter-note beats in the eight mea-
sures. To move this piece to another key would only require changing the #SCALE and #INIT lines.

Since the three parts in ‘‘Departure Tax’’ consist entirely of notes that lie in the scale and almost all
the notes have the same duration (eighth notes), SD format is especially appropriate. The few quarter notes
are handled by tying two eighth notes together with the tie symbol ‘‘(’’.

4
4

G D7 C D7

44

D7 G C D7

Figure 20 — Output from SD Data in Figure 19

Figure 20 is a representation (in standard music notation) of the M format output generated by run-
ning the SD example in the previous figure through the program sd2m. The M format output was then run
through an awk program, m2p.awk, which produced a pic file that uses a set of standard macros to print
music. The pic file was then massaged by hand to beam the notes and add chord symbols (m2p.awk doesn’t
know about them yet).

3.6. CCC

Chord charts are a succinct way of expressing the harmonic structure of a piece of music. Files in
CCC format are ascii encoded chord charts arranged to be easily read and edited by humans and computers
alike. By consciously mimicking the chord charts used by musicians, little special training is required to
enter CCC data and the programs that convert CCC files to other formats can be used to give quick auditory
feedback for editing.

The format for chord charts includes control lines and data lines; CCC control lines are distinguished
by an initial keyword. Keywords include:

#ARTIC style
Same as in MUT (p. 15) except in addition to the numeric arguments three symbolic style arguments
are defined: staccato, normal, and legato. Staccato makes each chord last 1/4 of the time between
chords. Normal makes each chord last 4/5 of the time between chords. Legato makes each chord last
the entire time between chords and does not retrigger any notes it doesn’t hav e to; e.g. if two suc-
ceeding chords both have C4 as the low note then C4 will not be resounded, just held. Legato will
not hold notes from one input line to the next, however. ‘‘#ARTIC normal’’ (the default) and
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‘‘#ARTIC 0.8’’ are equivalent.

#CHORD name note note . . .
This control defines the individual notes in a particular chord. The name field is just that, it can be
any collection of characters except ‘‘/’’ or whitespace characters. Thus ‘‘C’’, ‘‘Cm’’, ‘‘Cm7(b9)’’,
and ‘‘ugly_Zappa_mess’’ are all legal chord names (but do remember that these will be the names
you use in the chord sequences later in the file). Chord names may be up to 15 characters long. The
note fields can be in any one of three formats: decimal, hexadecimal, or mutran timeless note format
(described under GC); e.g. 60, x3c, x3C, X3c, X3C, and C3 are all equivalent. Octave numbers may
range from -2 to 8, although notes below C#-2 and above G8 are not allowed. Use ’#’ for sharp and
’b’ for flat.

#QUANT timevalue
Same as in DP (p. 19) except the setting of quantum defines the length associated with each chord.
‘‘#QUANT quarter’’ (the default) and ‘‘#QUANT 4’’ are equivalent. A fractional value is also per-
missible; ‘‘#QUANT 1.5’’ will make each chord have the duration of a whole note triplet.

#SPEED timevalue
#SPEED is a synonym for #QUANT.

Any line that is not recognized as a control line (does not begin with ‘‘#’’) is treated as a data line
containing chords to be played. Chord names must be separated from each other by whitespace characters
(i.e. tabs or spaces) and will be interpreted left to right, top to bottom. The special chord name "/" is taken
to mean the last chord played.

# Empty Bed Blues
#CHORD C C4 E4 G4 C5
#CHORD C7 C4 E4 G4 Bb4
#CHORD F C4 F4 A4 C5
#CHORD G7 D4 F4 G4 B4
#QUANT quarter
#ARTIC staccato
#REPEAT 8
C / / C7 F / G7 /
C / G7 /  C / C7 /
F / / /  F / G7 /
C / / /  C / / /
G7 / / /  F / G7 /
C / F /  C / G7 /
#ENDRPT

Figure 21 — ‘‘Empty Bed Blues’’ in CCC Format

Figure 21 is an example of a simple chord chart. Audio example 9 on the compact disc is a simple
interpretation of this data as a guitar accompaniment (with some vibes giving an idea of how the melody
goes). Unlike this simple example, however, many chord charts require dozens of chords. A simple expe-
dient is to create files that contain only Chord commands and use the mpp #INCLUDE command to refer to
them. Standard files exist for block piano chords and for guitar chords. Once again, the functions provided
by the music preprocessor program, mpp, are useful in CCC files (note the #REPEAT/#ENDRPT construc-
tion in the example).

3.7. CC

CC format is an extension to CCC format to allow it to be used for generation of accompaniments
and melodic lines. Like CCC, this format uses both control lines and data lines. The format for data lines
is identical in the two formats, however the control lines are different. The control keywords used in CC
format are:
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#CHORD name class transpositions
The #CHORD control defines harmonic structure by reference to a structure type and a list of (trans-
position) transformations to be carried out on it. The name field is any collection of characters except
whitespace characters (the special name ‘‘/’’ is disallowed). As in CCC format, ‘‘C’’, ‘‘Cm’’,
‘‘Cm7(b9)’’, and ‘‘ugly_Zappa_mess’’ are all legal chord names. The type field selects from a small
repertoire of harmony structures, ‘‘tri’’ for major and minor triads, ‘‘dom7’’ for dominant seventh and
other four-note harmonies, ‘‘aug5’’ for harmonies with an augmented fifth, and ‘‘dim5’’ for har-
monies with a diminished fifth. The transpositions field consists of twelve comma-separated signed
integers that indicate the transposition for each of the twelve pitch classes. See the example below
for clarification.

#PART name
The #PART control line can be used to indicate something of the phrase structure of the piece. The
name can be any sequence of non-whitespace characters. Typically the name will either describe the
function within the piece (e.g. ‘‘verse’’) or the generic pattern from which the following chords are
derived (e.g. ‘‘turnaround3’’). Accompaniment generation and melody generation programs may use
this information to deduce intermediate level structure.

#QUANT timevalue
Same as in CCC (p. 23).

#STYLE name
This control is used to choose among the different composition algorithms. Accompaniment genera-
tors and melody generators endeavor to produce output that matches the harmonic data and fits the
style specified here. As of this writing, ten styles are defined: ‘‘bebop’’, ‘‘bluegrass’’, ‘‘boogie’’,
‘‘classical’’, ‘‘march’’, ‘‘mozart’’, ‘‘samba’’, ‘‘sequence’’, ‘‘swing’’, and ‘‘tonerow.’’ About twenty-
five more styles are planned.

Any line that does not start with a sharp sign is treated as a data line containing chords to be played.
Chord names must be separated from each other by whitespace characters (i.e. tabs or spaces) and will be
interpreted left to right, top to bottom. The special chord name "/" is taken to mean the last chord played.

# Title 621791525
#STYLE swing
#INCLUDE "/u/psl/midi/etc/accagc.cc"
#QUANTUM quarter
#PART Igrva
Bb / Bo / Eb / F7 / Bb / Bo / Eb / F7 /
#PART Igrvb
Bb / Bb7 / Eb / Gb7 / Bb / F7 / B / F7 /
#PART Igrva
Bb / Bbo / Cm / F7 / Bb / Bbo / Cm / F7 /
#PART Igrvb
Bb / Bb7 / Eb / Eo / Bb / Cm F7 Bb / / /
#PART Igrb
D7 / Am7 / D7 / D7 / G7 / / / Dm7 / G7 /
C7 / C7 / C7 / C7 / Cm7 / / / F7 /  /  /
#PART Igrva
Bb / Bbo / Cm / F7 / Bb / Bbo / Cm / F7 /
#PART Igrvb
Bb / Bb7 / Eb / Eo / Bb / F7 / Bb / / /

Figure 22 — CC Format Chord Chart Created by IMG/1

Figure 22 shows a CC file generated by the program IMG/1 [LANGST90] to specify a one-minute
long swing composition to be played at a tempo of 128 beats per minute. The ‘‘# Title’’ line contains the
creation date expressed in seconds since midnight Jan 1, 1970 GMT (used to seed the random number gen-
erator for creation of the chord chart). No ‘‘#CHORD’’ lines appear in this file; the file mentioned in the
#INCLUDE line contains #CHORD definitions that describe the transformation from the key of C to all the
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# name type transpositions
#CHORD Am7 dom7 -3,-3,-3,-3,-4,-3,-3,-3,-3,-4,-3,-3
#CHORD Bb tri -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2
#CHORD Bb7 dom7 -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2
#CHORD Bbo dom7 -2,-2,-2,-2,-3,-2,-2,-3,-2,-2,-3,-2
#CHORD B tri -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1
#CHORD Bo dom7 -1,-1,-1,-1,-2,-1,-1,-2,-1,-1,-2,-1
#CHORD C7 dom7 0,0,0,0,0,0,0,0,0,0,0,0
#CHORD Cm tri 0,0,0,0,-1,0,0,0,0,-1,0,0
#CHORD Cm7 dom7 0,0,0,0,-1,0,0,0,0,-1,0,0
#CHORD D7 dom7 2,2,2,2,2,2,2,2,2,2,2,2
#CHORD Dm7 dom7 2,2,2,2,1,2,2,2,2,1,2,2
#CHORD Eb tri 3,3,3,3,3,3,3,3,3,3,3,3
#CHORD Eo dom7 4,4,4,4,3,4,4,3,4,4,3,4
#CHORD F7 dom7 5,5,5,5,5,5,5,5,5,5,5,5
#CHORD Gb7 dom7 6,6,6,6,6,6,6,6,6,6,6,6
#CHORD G7 dom7 7,7,7,7,7,7,7,7,7,7,7,7

Figure 23 — Excerpt from an #INCLUDEd CC File

appropriate chord harmonizations. Figure 23 is an excerpt from /u/psl/midi/etc/accagc.cc containing all the
#CHORD lines referenced in the chord chart in the previous figure.

The definitions for ‘‘Bb’’, ‘‘B’’, ‘‘Cm’’, and ‘‘Eb’’ are based on triad harmony, i.e. based on the first
(tonic), third (mediant), and fifth (dominant) scale degrees. For ‘‘Bb’’ everything is transposed down a
whole-step from the C major prototype. The harmonization will be based on Bb, D, and F (a whole-step
down from C, E, and G) and a (C major based) accompaniment that uses an A note will be transposed to
use a G note in its place. For ‘‘Cm’’ only the third and sixth are transposed down a half-step from the C
major prototype. The harmonization will be based on C, Eb, and G and an accompaniment that uses an A
note will be transposed to use an Ab note in its place.

All the other definitions in Figure 23 are based on four-note dominant seventh harmony. The defini-
tions for ‘‘Bb7’’, ‘‘C7’’, ‘‘D7’’, ‘‘F7’’, ‘‘Gb7’’, and ‘‘G7’’ are simple transpositions of the C7 based har-
mony in the prototype. The definitions for ‘‘Am7’’, ‘‘Cm7’’, and ‘‘Dm7’’ are transpositions that flat the
third and sixth of the C7 based harmony in the prototype.

With this simple mechanism a small collection of prototypes (four per style) can be used to provide
hundreds of harmonic structures. The program acca uses chord charts in the CC format and these harmonic
structure definitions to assemble complete accompaniments (e.g. bass, guitar, and drums) from a small set
of canned prototypes. Similarly, the program accl uses CC format chord charts to define harmonic struc-
ture within which it composes melody lines and harmonizations.

Audio examples 10 through 12 on the compact disc were generated by IMG/1. The accompaniments
#QUANT quarter
C / / / F7 /  /  /  C  /  /  /  C7 /  /  /
F7 / / / F7 /  /  /  C  /  /  /  A7 /  /  /
D7 / / / G7 /  /  /  C  /  C  /  C  /  /  /

Figure 24 — Short, Generic CC Format Chord Chart

were specified as CC data (generated by mkcc and interpreted by acca). The flexibility gained by being
able to encode the harmonic structure without specifying any stylistic requirements should be demonstrated
by Example 13 on the disk. It is the short CC file shown in Figure 24 interpreted first as boogie-woogie,
then as samba, and finally as bluegrass.

3.8. GC

Files in the GC format give specific instructions on providing guitar-like accompaniment (although
they can also be used to provide other kinds of chording accompaniment as well). GC separates the
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specifications of the harmonic structure and the rhythmic structure of an accompaniment. This allows inde-
pendent experimentation with either aspect with little effort.

Programs exist to convert this format to synthesizer data that provides the specified accompaniments.
There are also programs that use GC data to define the harmonic structure of an original instrumental solo.
See the following section on the lick program for an example.

Basic to the understanding of GC format is the concept of a ‘‘picking pattern.’’ Picking patterns are
sequences of events that occur at evenly-spaced times within the basic time interval. The basic time inter-
val, set by the #QUANT control, is the time allotted to each line of GC data. Each event is a part of the
chord to be played at the specified time. Events are specified by reference to the fields in a data line, thus
‘‘1’’ represents the note in the first field, ‘‘2’’ represents the note in the second field, and ‘‘1-99’’ represents
the notes in all the fields.

A common guitar pattern called ‘‘split’’ inv olves hitting a low string (the ‘‘bass note’’) waiting half a
beat and then strumming the upper strings (the ‘‘chord’’). The whole pattern would take one beat. This
pattern is specified by ‘‘#PICK split 1 2-99.’’ In fingerpicking patterns the basic time interval might be
subdivided into quarters with a single string being played in each subdivision (e.g. ‘‘#PICK fingers 1 4 2
3’’). At any time the current picking pattern determines how many subdivisions each basic time interval is
given.

While the picking pattern governs the onset of notes, their duration (and thus their stopping time) is
determined by the length of their subdivided time interval and the ‘‘articulation’’ with which they are being
played. An articulation of 1 will cause notes to be sustained through their entire time subdivision, making
them contiguous with no intervening silence. An articulation of 0.5 will make silences between the notes
that are as long as the notes themselves. Values larger than 1 may also be useful; for example, if ‘‘#PICK
split’’ is played with an articulation of 2, the bass note and chord will overlap each other.

Control lines begin with a keyword and may contain arguments separated by whitespace. The vari-
ous keywords and their meanings are:

#ARTIC #.# [#.#] . . .
This control requires one or more parameters to specify the duration of notes as a fraction of the time
allotted to each part of the chord. If more than one parameter is given, then they will be used in rota-
tion, starting with the first. It is common to specify as many articulation parameters as there are sub-
divisions in the current picking pattern. The following controls set the rotation back to the first:
#ARTIC, #MULT, #PICK, #QUANT, #SPEED, #STYLE. Note that articulations greater than 1 can
cause notes to hang over the end of the time allotted to each input line except the last. So if ‘‘#PICK
split’’ and ‘‘#ARTIC 2 2’’ hav e been specified, the chord notes will last halfway through the next pat-
tern up until the end when there will be no next pattern to overhang.

#BARLEN #
Same as in DP (p. 19).

#CHORDTONES name note[,note]. . .
This control is used by programs wishing to know the harmonic structure of the piece (see the
description of lick below for an example). Two parameter fields, separated by <space> or <tab>, are
required. The first field is a chord ‘‘name’’ and may be any combination of ASCII characters not
including whitespace characters. The second field is a comma-separated list of pitch classes in either
numeric or symbolic form (0 ≡ C, 1 ≡ C#, . . .  11 ≡ B).

#METER # #
Same as in MUT (p. 15) except the time signature will be used to reset BARLEN (based on 120
clocks per quarter notes) and the METER parameters can be fractional.

#MULTIPLICITY #
This control requires a parameter to specify the number of repeats of each following chord line. This
greatly shortens pieces containing long sequences of repeated chords. ‘‘#MULT’’ is a synonym for
‘‘#MULTIPLICITY’’.

#PICK name [#] . . .
The PICK control requires a name parameter and has optional parameters. If it appears with just a
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name parameter it invokes an already-defined picking pattern. If it appears with further parameters it
defines (or redefines) the named picking pattern. Each optional parameter is either a number or a
range of numbers (separated by a hyphen) indicating the notes to be played; ‘‘1’’ represents the first
note on the data line; ‘‘2-99’’ represents all the notes on the line except the first, and so on. The num-
ber of optional parameters defines the interval subdivision for the pattern. A common picking pattern
is defined by: ‘‘#PICK AltBass 1 3-99 2 3-99’’ which means that a piece with #QUANT set to 2 will
generate four eighth-note time subdivisions.

#QUANT timevalue
Same as in DP (p. 19) except the duration being defined is that for a line of data. If ‘‘#QUANT 4’’ is
specified, the time interval represented by a line of input data is a quarter note. Changing picking
patterns will change how this interval is subdivided, but not its overall length. The QUANT argu-
ment may be a floating-point number; thus ‘‘#QUANT 2.667’’ will give dotted quarter notes (approx-
imately).

#SCALE note[,note]. . .
This control is used by programs wishing to know the scalar structure of the piece. It is followed by
a comma-separated list of pitch classes in either numeric or symbolic form (0 ≡ C, 1 ≡ C#, . . .  11 ≡
B). A chromatic (dodecaphonic) scale could be defined by: ‘‘#SCALE 0,1,2,3,E,F,F#,G,Ab,9,10,11’’

#SPEED timevalue
SPEED is a synonym for QUANT.

#STRUM #.#
STRUM sets the delay (in quarter-notes) between notes played in a chord. If STRUM is set to 0.025
and a six-note chord is played, the first note will be played one thirty-second note ahead of the last (5
* 0.025 quarter notes). See the description of #PICK for additional information.

#STYLE name
This control is a convenient way to specify the accompaniment figure to be used; it invokes a prede-
fined style. This control will set picking pattern, strum value, articulation value(s), and velocity
value(s) to those defined by the style.

#STYLEDEF name
This control defines a style. It requires a single name parameter by which the style will be invoked.
The style that is defined includes the current picking pattern, strum value, articulation value(s), and
velocity value(s). A typical usage is to create a separate file containing the definitions of several
styles and then include it in data files with the music preprocessor #INCLUDE statement.

#VELOCITY # [#] . . .
This control requires one or more decimal parameters to specify the key velocity with which each
part of the chord will be played. If more than one parameter is given, then they will be used in rota-
tion, starting with the first. The #MULT, #PICK, #QUANT, #SPEED, #STYLE, and #VEL controls
set the rotation back to the first (‘‘#VEL’’, ‘‘VOLUME’’, and ‘‘VOL’’ are all legal synonyms for
‘‘#VELOCITY’’). The key velocity parameters may range from 1 to 127; a common default is 64. If
the PICK pattern has metric subdivisions then specifying multiple key velocity parameters may be
particularly useful, e.g. ‘‘#VEL 80 48 48’’ will accent the first beat of each waltz pattern.

Any line that begins with a sharp sign but is not recognized as a control line is considered a com-
ment. Further, any line beginning with a sharp sign followed by a space (i.e. ‘‘# ’’) will never be recog-
nized as a control line and will thus always be considered a comment line.

In addition to the controls listed above, the controls defined for the program mpp are useful in GC
files. For instance, files containing a large repertoire of style definitions can be referenced with the mpp
#INCLUDE control.

GC chord lines consist of notes encoded in mutran ‘‘timeless’’ format (without time values) separated
by spaces or tabs. Figure 25 gives the BNF for the timeless note format. Note that the character ‘‘−’’ func-
tions differently from the way it does in M format (where it’s a silent placeholder with no duration); in GC
format it is a synonym for ‘‘R’’ and effectively has duration.
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<note> :: <snote><octave> | <rest>
<snote> :: <letter> | <letter><accidental>
<letter> :: ’A’ | ’B’ | ’C’ | ’D’ | ’E’ | ’F’ | ’G’
<accidental> :: <sharp> | <flat>
<sharp> :: ’#’ | ’#’ <sharp>
<flat> :: ’b’ | ’b’ <flat>
<rest> :: ’R’ | ’−’
<octave> :: ’−1’ | ’0’ | ’1’ | ’2’ | ’3’ | ’4’

| ’5’ | ’6’ | ’7’ | ’8’ | ’9’
Figure 25 — BNF for Mutran Timeless Note Format

# Pecusa Waltz, (c) psl 6/87
#PICK alt 1 3-99 2 3-99
#ARTIC 1.5 1.8 1.5 1.8
#VEL 64 80 64 80
#STRUM 0.0125
#METER 4 4
#SCALE 7,9,10,0,2,3,5,6
#QUANT 2
#CHORDTONES Gm 7,10,2
G2 D3 Bb3 D4 G4
G2 D3 Bb3 D4 G4
#CHORDTONES Adim 3,6,9,0
Eb3 C3 C4 Eb4 Gb4
A2 Gb2 C4 Eb4 Gb4
#CHORDTONES Gm 7,10,2
G2 D3 Bb3 D4 G4
G2 Bb2 Bb3 D4 G4
#CHORDTONES D7 2,6,9,0
D3 A2 A3 C4 F#4
D3 - - - -

Figure 26 — Example of GC Format

Figure 26 is a fragment of a bluegrass backup guitar-chord file. the first few statements define a pick-
ing pattern and the other elements of a style that is called ‘‘AltDrive’’ in one of the standard GC library
files. The last data line in this fragment introduces a rest that lasts for one and a quarter beats (a half note
per line minus the dotted eighth duration of the D3).

3.8.1. LICK

The lick program produces banjo improvisations to fit a specified set of chords expressed in the GC
format. It implements a technique that uses specific information about the mechanics and common prac-
tices of five-string banjo playing to compose instrumental parts that follow a specified chord progression
and are particularly suited to (i.e. easy to play on) the banjo.

The 5-string banjo is one of the few musical instruments of American design. Even so, it is an adap-
tation of an African instrument formed from a gourd, a stick, and one or more gut strings. Figure 27 is a
schematic diagram of a five string banjo.

The 5-string banjo is commonly played in one of two ways, ‘‘Clawhammer style’’ in which the
strings are struck with the tops of the fingernails on the right hand and plucked with the pad of the right
thumb, and ‘‘Scruggs style’’ (named after Earl Scruggs, the first popularizer of the style) in which the
strings are plucked with the thumb and first two fingers of the right hand, usually wearing metal or plastic
plectra (‘‘picks’’) on all three fingers. In both styles the left hand selects pitches by pressing the strings
against the fingerboard causing the metal frets in the neck to stop the strings at specified points that produce
chromatic pitches; this is called ‘‘fretting’’ the strings.
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Figure 27 — 5-string Banjo

The lick program simulates Scruggs style playing. In this style, the right hand typically follows a
sequence of patterns. The most common of these patterns are 8 notes long and consist of permutations of
the three playing fingers. It is uncommon for the same finger to be used twice in a row because it is easier
and smoother to alternate fingers. The most common pattern is the ‘‘forward roll’’: thumb, index, ring,
thumb, index, ring, thumb, ring (or T I R T I R T R). Many banjo parts are composed of only two or three
basic patterns artfully arranged to allow the melody notes to be played.

The mechanics of banjo playing impose certain restrictions on the sounds that can be produced. At
most five distinct notes can be produced at once and certain note combinations cannot be produced at all.
Sequences of notes on the same string will be slower and sound different from sequences that alternate
between strings; and so forth. Much of the sound that we associate with the banjo is a necessary result of
these constraints. Lick generates a large number of possible solos and then uses these constraints to judge
which of the solos is the most ‘‘banjo-like’’ (i.e. easy to play on the banjo).

Lick produces both MPU format output files that can be played by the synthesizers and ‘‘tablature’’
files that can be read by humans (and also by machines, see the description of TAB format).

4
4

G min Adim

44
G min D7

Figure 28 — ‘‘Pecusa Waltz’’ Lick Output

Figure 26 in the previous section shows the beginning of the guitar chord file for ‘‘Pecusa Waltz’’ in
GC format. Figure 28 shows the lick output for the chords in Figure 26 converted to standard music nota-
tion (via M format and pic) from the MPU format output. The chords for this piece are somewhat atypical
for 5-string banjo music,7 but, even when constrained to use only ‘‘forward rolls’’ for a right hand pattern
(as in this example), the result is quite credible.

7 Nor is it typical for a piece in 4/4 to be called a waltz, but . . .
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The algorithmic music composition demo, narrated by two voice synthesizers named ‘‘Eedie &
Eddie’’ and described in [LANGST86], involves composing music for listeners who call in through the
public telephone network. Eedie & Eddie’s demo uses lick to compose banjo improvisations for two differ-
ent pieces (one in the ‘‘long’’ version of the demo and one in the ‘‘normal’’ length demo). The fragment
shown here (audio example 14 on the compact disc) comes from the ‘‘normal’’ length demo. In example
14 the banjo plays it twice through, once slowly and then once at a more normal pace. The final audio
example contains a full rendition of this piece. The banjo improvisations seem to get the most enthusiastic
listener reception of all the composition techniques used in the telephone demo.

3.9. TAB

Tablature is a musical notation system. (According to the American Heritage Dictionary, Second
College Edition: ‘‘An obsolete system of notation using letters and symbols to indicate playing directions
rather than tones’’). ‘‘Tab’’ is in common use today by teachers of stringed musical instruments, especially
in folk or popular music. When a piece requires playing the G above middle C, there is only one way to
play it on a piano, but there are 5 ways on the banjo, 6 on the guitar, and many more on the pedal steel, all
with different timbral characteristics, decay, etc..

In the attempt to simulate the playing of an instrument on which there is such a choice, knowing how
the sounds are produced allows greater realism in the generated notes (e.g. letting ‘‘open’’ strings ring
longer, or letting a string ring until it is used for another note). Further, tablature can be transcribed in an
ascii format quite easily.

The major change required to make tablature easy to transcribe is ‘‘turning it sideways’’ so that it
reads top-down instead of the conventional left-to-right. Each string is represented by either a number,
indicating the position at which the string is ‘‘fretted’’ or ‘‘stopped’’, a left parenthesis, indicating a ‘‘held’’
note (essentially a tie), or a vertical bar to indicate that the string is not played. The strings are usually
numbered from ‘‘1’’ on the right (the string with the highest pitch) increasing to the left. The leftmost
string in guitar tab would be the ‘‘sixth’’ string (the string with the lowest pitch). Thus a C major scale on

#TUNING E1 A1 D2 G2 B2 E3
T | 3 | | | |
I | ( 0 | | |
M | ( 2 | | |
T | | 3 | | |
I | | | 0 | |
M | | | 2 | |
I | | | | 0 |
M | | | | 1 |

Figure 29 — C Major Scale in TAB Format

the guitar could be notated as shown in Figure 29. (audio example 15 on the compact disc). Note that the
initial C note, played on the fifth string, is held through the following 2 notes by the ties (‘‘(’’) in the second
and third lines. The optional letters at the left indicate the finger used to pick the string, T = thumb, I =
index, M = middle, R = ring, and P = pinky.

Control lines comprise an initial keyword possibly followed by arguments. Tab format files can have
other information embedded in them for the programs that take them as input. For instance, almost all pro-
grams require the ‘‘#TUNING’’ control (described below).

The common control keywords are (in alphabetical order):

#ARTIC #.#
Same as in MUT (p. 15) except only one argument is used to set the durations of all notes generated.

#BARLEN #
Same as in DP (p. 19).
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#CHAN # [#] . . .
This control assigns channels to the strings (default is usually channel 1). A decimal number argu-
ment in the range 1 to 16 is expected for each string.

#METER # #
Same as in GC (p. 26).

#NUT # [#] . . .
This strange control expects an argument per string that defines the string length. The most common
example of an instrument that would need something other than the default (all zeros) is the 5-string
banjo which has one string, (the ‘‘fifth string’’) shorter than the rest. A 5-string banjo piece would
probably have, at the beginning:
#TUNING G4 D3 G3 B3 D4
#NUT 5 0 0 0 0

#QUANT timevalue
Same as in DP (p. 19) except the argument specifies the number of tablature lines per measure and
can be fractional; thus ‘‘#QUANT 1.5’’ would make triplet whole notes (i.e. three tablature lines will
take two measures’ time).

#SPEED timevalue
SPEED is a synonym for QUANT.

#TUNING # [#] . . .
This control assigns pitches to the strings and is often used to determine how many strings are
involved. A pitch name or decimal number argument is expected for each string, separated by
whitespace. A guitar in standard tuning would be represented by either of:
#TUNING E2 A2 D3 G3 B3 E4
#TUNING 40 45 50 55 59 64
Note that the ‘‘sixth’’ string, i.e. the lowest pitched string, is at the left, as if you were facing the gui-
tar while it is being held neck-up.

#VELOCITY #
Same as in GC (p. 27) except a single argument specifies the MIDI key velocity to use for each note
played.

In addition to these, programs may define controls for their own use. It is recommended that such
controls consist of the number sign followed immediately (with no intervening whitespace) by upper-case
characters. In particular, the controls defined for the music preprocessor mpp are useful in tab files.

3.10. DDM

Files in DDM format contain probablistic instrument descriptions for programs that use a composi-
tion technique called ‘‘stochastic binary subdivision.’’ Since this technique can be used to generate pieces
of arbitrary length from a single file, this format could, in theory, be considered infinitely compact. Of
course the music generated by these routines can become boring in a finite amount of time; but even so, a
great deal of useful musical output can be generated from quite a small DDM file.

Stochastic binary subdivision was originally designed to create drum patterns, but was later extended
to create melodies. The library routine sbsd() generates a single measure of drum pattern or melody by
generating a set of simultaneous patterns and then combining them. Its input is a list of ‘‘instruments’’
(which may be different kinds of drums, or different notes for a pitched instrument) with associated param-
eters defining such characteristics as MIDI channel, loudness, and minimum note resolution. In brief, the
algorithm does the following. For each participating instrument, an interval of time starting with one mea-
sure is recursively subdivided into two equal parts with a musical event (e.g. drum strike or a musical note)
being placed at each subdivision. This continues until the program decides, based on the density probabil-
ity and minimum resolution for that instrument, that the subdivision has gone far enough. The subdivision
process is carried out independently for each instrument and then the results are combined using a priority
structure that only allows one instrument’s event to happen at a particular moment.
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The library subroutine sbsdinit() reads instrument parameters from an instrument description file
(typically with a file name ending in ‘‘.ddm’’) and creates an internal data representation to drive the sbsd()
routine. Instrument description files contain instrument lines and control lines. Instrument lines have the
format:

Channel/Key# Density:Up-beat:Resolution:Duration:Velocity Comment
The parameter fields in the instrument lines have the following meanings:

Channel
The MIDI communication scheme is multiplexed into sixteen channels. MIDI synthesizers can
choose to accept only the data on a particular channel or the data on all channels (‘‘Omni’’ mode).
The channel number specified (in decimal) here will determine the channel over which the output for
this instrument is sent.

Ke y#
While melodic synthesizers associate key numbers with pitches (e.g. middle C is 60, the B below it is
59, etc.), drum synthesizers associate key numbers with instruments. The association is specific to
each synthesizer or drum machine; Yamaha drum machines usually use 45 for the bass drum and 52
for the snare drum while the Alesis HR16 uses 35 and 38 (respectively) for them. To generate
melodic output this parameter should be either a MIDI key number in the range 13 to 127 (C#-1 to
G8) or a scale delta in the range -12 to 12. The effect of scale deltas will be discussed below. The
Ke y# can be specified as hexadecimal (prefixed with ‘‘0x’’), decimal, or by note name, e.g. ‘‘Bb3’’.

Density
At each step in the recursive subdivision a pseudo-random decision is made as to whether to subdi-
vide further. This parameter defines the probability that subdivision will occur. Density is expressed
as a percentage; a value of 0 assures no subdivision, while a value of 100 guarantees subdivision at
ev ery level (until stopped by Resolution, see below).

Up-beat
If Up-beat is ‘‘D’’, the musical event will be placed at the beginning of each time subdivision; if Up-
beat is ‘‘U’’, the musical event will be placed at the first time when a subdivision did not occur.
Thus, two instruments that only differ in the Up-beat parameter will have different fates; if, for
instance, they both have Density set to zero, one will generate a note on the first beat of the measure
(the ‘‘down beat’’) while the other will generate a note in the middle of the measure (the ‘‘up beat’’ in
a two-beat world).

Resolution
To avoid the possibility of endless subdivision, and to allow a small degree of level-sensitive control
over the Density parameter, Resolution defines the time length at which no further subdivisions will
be allowed to occur. It is expressed in fractions of a measure, e.g. a Resolution of 4 represents a
quarter note.

Duration
Most drum synthesizers use only the key-down events (onsets) of notes and ignore the key-up events,
thereby ignoring the duration. Some, however, use both. Setting Duration to a value greater than 0
will give the note a duration of that many sixty-fourth notes; e.g. 24 will make a dotted quarter-note
duration. It is perfectly legal for Duration to be larger than 64/Resolution; however, any note that is
generated before the Duration has expired will end the note early.

Velocity
The speed with which a key is pressed down is called its velocity. Most synthesizers use this infor-
mation to control loudness. The range of legal values for Velocity is 1 (vanishingly quiet) to 127
(mucho forte).

Comment
Any text past the Velocity field is considered comment and ignored.

Figure 30 shows the file ‘‘drum.ddm’’ as used in an algorithmic music composition telephone demo
[LANGST86]. Audio example 16 on the compact disc was generated from this DDM file. Because the
bass drum definition appears first and it has Up-beat specified as ‘‘D’’ it will always play the downbeat
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# Eedie’s basic drum rhythm
2/45 80:D:2:0:96 Bass drum
2/52 80:U:2:0:96 Snare drum
2/57 80:D:8:0:127 Closed hi-hat
2/51 50:U:8:0:64 Rim shot
2/48 50:D:8:0:80 Tom-tom
2/54 40:U:8:0:64 Hand clap
2/55 40:U:8:0:64 Cowbell
2/59 67:U:8:0:80 Open hi-hat
2/62 80:D:8:0:72 Ride cymbal
2/57 80:D:16:0:96 Closed hi-hat

Figure 30 — DDM File for Telephone Demo

(beat 1) of the measure. Because it has Resolution set to 2 (half notes) it will only be able to play on beats
1 and 3 of the measure. Because it has Density set to 80% it will play on the third beat 80% of the time.
Because the snare drum has the same parameters as the bass drum except for Up-beat, it will play on beats
2 and 4 80% of the time and on beat 3 4% of the time (the snare drum tries 20% of the time, but 80% of the
time the bass drum already has it).

Ride
Open hat

Clap
Snare
Bass

Clsd hat
Cowbell

Rim
Tom

4
4

Ride
Open hat

Clap
Snare
Bass

Clsd hat
Cowbell

Rim
Tom

44

Figure 31 — Sample Output From DDM File in Figure 30

Figure 31 is a notated form (produced via M format and pic) of eight measures of drum rhythm gen-
erated from the file in the preceding figure. The specified probabilities were realized, for the most part. Of
the 5 measures generated (not counting the 3 measures that were repeats) the bass drum played on the third
beat in 4, i.e. exactly 80% of the time. The snare drum played on beats 2 and 4 100% of the time and never
played on the 3 beat (it only had one chance).

DDM format can also be used to generate melodies. If an instrument’s Key# is specified as a number
less than or equal to 12 it is considered a scale offset rather than an absolute key number. The value given
as Key# can also be a negative number. Thus the output becomes a series of relative scale motions. Both
types of specification (relative and absolute) can be intermixed. Indeed, the relative specifications need
some absolute value to start with; in the absence of anything else the starting point defaults to middle C.

Tw o controls are implemented to facilitate relative motion.

#SCALE note[,note]. . .
The #SCALE control defines the pitches that can be generated. It is followed by a comma-separated
list of pitch classes in either numeric or symbolic form (0 ≡ C, 1 ≡ C#, . . .  11 ≡ B). Any relative
motion will be interpreted in accordance with the specified scale. The default values form a dodeca-
phonic (12-tone) scale.

#LIMITS low,high
The #LIMITS control line contains two comma-separated decimal numbers that are taken to be the
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low and high limits for pitches generated by relative motion (this avoids subsonic and supersonic
notes). The default values are C-2 and G8.

#SCALE A,C,D,Eb,E,G
#LIMITS C2,C5
1/A3 50:D:2:32:64 A above middle C, mezzo-forte
1/E3 50:D:4:16:56 E above middle C, mezzo-piano
1/+2 35:D:8:8:48 up two scale steps, piano
1/-2 35:U:8:8:48 down two scale steps, piano
1/+1 60:D:16:4:72 up a scale step, forte
1/-1 65:U:16:4:64 down a scale step, mezzo-forte
1/0 33:U:8:8:60 repeat previous note, mezzo-piano

Figure 32 — DDM File for Melody Generation

A DDM file that uses relative motion is shown in Figure 32. This file is similar to the one used in the
algorithmic composition telephone demo to generate Eedie’s ‘‘scat solo.’’ The #SCALE line defines an A
‘‘blues pentatonic’’ scale (with the added flat 5) and the #LIMITS line cuts off notes below C1 and above
C4.

Figure 33 shows eight measures of music generated from the file in Figure 32. Note that the program
repeated each measure it had generated; the default is to allow at most one repeat of each measure (see the

4
4
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Figure 33 — Sample Output From DDM File in Figure 32

description of the -r option below).

Audio example 17 on the compact disc was generated from the DDM file in Figure 32, while example 18
was generated from a similar DDM file that has a scale specification of ‘‘#SCALE A,B,C,D#,E,F,G#.’’ For
example 18 the MPU output was piped through the scat filter and sent to a DecTalk speech synthesizer (the
drone part is played by a human and included for ‘‘atmosphere’’). Notice that all the lines request durations
that are only as long as their minimum resolutions. Since most instruments will not subdivide down to their
minimum resolution there will be some rests in the output; (not a bad idea for something that is to be sung).

In addition to the #SCALE and #LIMITS control lines, the #DEFINE and #INCLUDE control lines
of mpp make reference to libraries of drum definitions convenient. Definitions of Channel/Key# symbols
set up for use with DP format will work with DDM files as well.

Stochastic binary subdivision programs recognize several command line options to control the gener-
ation process:

−b Generate the specified number of measures (‘‘bars’’). The number of measures is treated as an
unsigned number, thus if −b−1 is specified, a virtually infinite number of measures will be produced
(actually only 232− 1).

−debug
Print an ASCII version of the generated pattern on the standard output instead of sending MIDI out-
put there. In this graphic output the results of the subdivision for all instruments is shown. It differs
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from the normal MPU format output in that the MPU output can contain no more than one instrument
ev ent at each sixty-fourth note (selected by precedence criterion from among those instruments that
generated a note at that time), whereas the ASCII output shows all the subdivisions generated. When
−debug is specified, the random number seed is also printed on stderr.

−mformat
Generate output in M format on the standard output, instead of sending MPU output there. The M
format output represents the same notes that would be in the MPU output except that all notes are
associated with MIDI channel 1. When −mformat is specified, the random number seed is also
printed on stderr.

−r Set the maximum number of repeats allowed to the specified number. If the maximum number of
repeats, N is greater than 1, then each time a measure is generated a repeat count is also generated.
The choice is made from a uniform distribution ranging from 0 to N - 1. The default is −r2 (i.e. each
measure could appear twice).

−s Set the random number seed to the specified value. Without this argument the random number seed
is set to the number of seconds that have elapsed since midnight, January first, 1970 plus the process
id of the current process; (the process id is added to avoid having two runs within the same second
produce the same output). Setting the random number seed allows reproducibility.

4. Summary

MPU

MA

DP

MIDI

SMF

CC
MUT

M

SD

DDM

TAB CCC

GC

dt
pic

vtx

Figure 34 — Little Language Conversion Flow

We hav e described sixteen ‘‘little languages’’ to perform tasks relating to music. Tables in the appen-
dices give control keyword usage and a list of programs for these languages. The diagram in Figure 34
shows most of the language interconversions for which programs exist. The table in Figure 35 lists the lan-
guages along with standard file name endings, related formats, and some strengths and weaknesses for
each. In this table, ‘‘pic’’ refers to macros for music printing using the pic troff preprocessor, ‘‘vtx’’ refers
to data for the Votrax PSS speech synthesizer, and ‘‘dt’’ refers to data for the DecTalk DT01 speech synthe-
sizer.



file
type converts directly to

strengths lacks

CC .cc MPU A, B, C, E, F E, H

CCC .ccc MPU, GC A, B, F E

DDM .ddm MPU, M A, B, C F, H

DP .dp MPU, MA A, B, F H

GC .gc MPU, MA, TAB A, B, F H

M .m MPU, pic, vtx B, F H

MA .ma MPU, MIDI B, F, H  A

MIDI .midi MPU, MA A, G, H B, C, F

MPU .mpu MIDI, MA, M, SMF, dt A, G, H  B, C, F

MUT .mut MPU, M A, B, F H

MUTRAN ? IBM 1620 binary A, F D

SD .sd M A, B, F  H

SMF .mf MPU G, H, I B, C, F

TAB .tab MPU B, F, I  H

A − Dense; compact encoding of data
B − Easily edited by ascii text editors
C − High-level conceptual description
D − Processing software exists
E − Large style repertoire

F − Easily read (understood) by human musicians
G − Standard; allows communication with other software
H − General; expresses anything expressable with MIDI
I − Encodes subtleties beyond keyboard capabilities

Figure 35 — Little Language Characteristics

Letter codes appearing in the ‘‘strengths’’ column refer to noteworthy advantages of the entry, while
codes appearing in the ‘‘lacks’’ column indicate important features lacking.8 In particular, the ‘‘E’’ code
appearing in both columns for CC is meant to indicate that although a large style repertoire is possible, only
a few styles have been implemented so far.

Not shown in this table are several little languages that, while not designed with music in mind, have
proven extremely helpful in music projects (including the implementation of little languages themselves
and the creation of music project documentation). Were these not already generally known by the Unix
community they would have been described in this report. Most notable among these are: awk [AHO79],
make [FELDMA79], pic [KERNIG84], sh, and tbl [LESK76].

5. Finale

The final three audio examples associated with this paper are ‘‘production numbers’’ of various sorts.
The pieces are intentionally prosaic in style (with the possible exception of the ‘‘interpretive’’ introduction
to Pecusa Waltz). It was felt that the success or failure of the tools would be easier to judge in examples
based on accessible, easily recognized musical styles than it would be with more abstract, ‘‘experimental’’
forms.

Example 19 is a piece entitled ‘‘Starchastic 12264’’ produced from a small set of DDM files. The
first few measures as well as the final chord sequence are ‘‘canned’’ (i.e. encoded in a shell file in MA for-
mat); the rest is generated algorithmically from four DDM files totaling just over 900 characters. The bass
line is generated by a single DDM file containing two sections (one for the four hyperactive measures at the
beginning and one for the rest of the piece). The drum part uses two files (one for the basic ‘‘trap set’’ part
and one for the ‘‘latin’’ solo in the middle). All the melodic lead lines are generated by a single DDM file.
A commented listing of the four DDM files appears in Appendix D. The number in the title was the pro-
cess id for the shell file that assembled the piece.

8 Thus, code ‘‘D’’ is taken for granted and only appears if it’s lacking.



Example 20 is a rendering of the evocative lament ‘‘Some Velvet Morning’’ (written by Lee Hazel-
wood and popularized by Mr. Hazelwood and Nancy Sinatra) performed by ‘‘Eedie & Eddie and the
Reggaebots.’’ The bass and guitar parts were generated from MUT format files, not unlike those generated
by the shell program described in the section on MUT. The drum part was entered as a DP file. The assem-
bly of the instrumental parts was coordinated by the program make. The ‘‘vocal’’ parts were entered in M
format and converted to Dectalk speech synthesizer coding by the programs m2mpu and sing (with liberal
applications of the program mpp). They were then edited digitally to provide more precise synchronization
(see technical notes).

The final audio example (#21) is a rather unorthodox bluegrass treatment of a song about love, mysti-
cism, chaos, and poetic nonconformity called ‘‘Pecusa Waltz’’ (mentioned earlier under GC and LICK).
The peculiar introduction represents the heat death of the universe (in 22 seconds on fiddle, banjo, and bass
− no mean feat). The ‘‘a capella’’ verse that follows is sung in parallel minor thirds (by humans); the piece
was originally written to be sung by a single singer through a device known as a ‘‘harmonizer’’ that gener-
ates parallel harmonies such as these.

There follow solos played on (synthesized) banjo and fiddle, and verses and choruses sung by
humans. Some of the parts were entered as explicit notes using TAB, DP, MA, and M formats, and some
were entered as general instructions or constraints using GC format. All but two of the banjo parts were
composed using lick. Programs like cntlseq were used to control recording levels and sound effects.

Although the piece is in 4/4 time, it is called a waltz in an effort to deny the rigidity of accurate clas-
sification. The name ‘‘Pecusa’’ refers to a volcanic island in the Pacific Ocean on which it is difficult to
think of human actions as having much significance in the cosmos.
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APPENDIX A

Control Keyword Usage
#ALLRPTS mpp
#ALLSECTS mpp
#ARTIC mut m dp ccc gc tab
#BAR mut m
#BARLEN dp gc tab
#CHAN mut m tab
#CHORD ccc cc
#CHORDTONES gc
#CODING sd
#CPQ m
#DEFINE mpp
#DOSECT mpp
#ELSE mpp
#ENDIF mpp
#ENDRPT mpp
#ENDSKIP mpp
#GAIN dp
#IFNEXT mpp
#INCLUDE mpp
#INIT sd
#LIMITS ddm
#METER mut m sd gc tab
#MULTIPLICITY gc
#NOTRPT mpp
#NOTSECT mpp
#NUT tab
#ONLYRPT mpp
#ONLYSECT mpp
#PART cc
#PICK gc
#QUANT dp sd ccc cc gc tab
#REPEAT mpp
#ROLL dp
#SCALE sd gc ddm
#SKIP mpp
#SOLO mut m
#SPEED ccc gc tab
#STRUM gc
#STYLE cc gc
#STYLEDEF gc
#SYNC mut dp
#TEMPO mut m
#TITLE mut m
#TRANS mut m
#TUNING tab
#TUPLE dp
#VELOCITY gc tab
#VOICES mut m sd



APPENDIX B

Little Music Language Tools
acca cc mpu AMC of stylized accompaniments
accl cc mpu AMC of stylized melody lines
adjust mpu mpu MMF to retime a piece from a click track
allnotesoff CLA mpu UTG MIDI commands to clear stuck notes
axtobb ma midi,mpu,smf assemble MIDI/MPU/SMF files
bars mpu mpu MMF to cut and paste measures
bbriffs CLA mpu AMC using the ‘‘riffology’’ technique
bbtoax midi,mpu,smf ma convert MIDI/MPU/SMF files to MPU assembler
bs cc,MOUSE cc,mpu AMCGI of video background music
ccc ccc mpu chord chart compiler - produce accompaniments
ccc2gc ccc gc convert chord charts to guitar chord files
ched mpu mpu graphic editor for MPU data
chmap mpu mpu MMF to map MIDI channels
chpress CLA mpu UTG MIDI channel after-touch
cntl CLA mpu UTG MIDI continuous controller messages
cntlseq CLA mpu UTG sequences of controller or aftertouch messages
countin mpu mpu MMF to trim leading silence intelligently
da midi,mpu ma MIDI/MPU disassembler
ddm ddm m,mpu AMC of drum rhythms and melodies
ddmt MOUSE ddm,mpu AMCGI of drum rhythms & melodies
dp2ma dp ma convert drum pattern files to MPU assembler
dp2mpu dp mpu convert drum pattern files to MPU data
dx7but CLA mpu UTG Yamaha DX7 button pushes
dx7tune CLA mpu UTG DX7 tuning commands
ekn CLA cc,mpu AMC for network testing
fade MOUSE mpu graphic MIDI mixer controller
filter mpu mpu MMF to invoke filters on parts of an MPU data stream
fract mpu mpu AMC MMF to perform fractal interpolation
gc2ma.awk gc ma convert guitar chord files to MPU assembler
gc2mpu gc mpu convert guitar chord files to MPU assembler
grass cc mpu AMC of bluegrass music
inst CLA mpu UTG MIDI program change commands
invert mpu mpu MMF to perform pitch inversion
julia CLA mpu AMC based on Julia sets
just mpu mpu MMF to quantize timing
keyvel mpu mpu MMF to manipulate key velocities
kmap mpu mpu MMF to remap MIDI key numbers
kmx MOUSE mpu graphic MIDI patch bay controller
libnote TEXT TEXT
lick gc mpu,tab AMC of banjo solos
m2mpu m mpu convert M files to MPU data
m2mut m mut convert M files to MUT files
m2p.awk m pic convert M files to pic macros for scoring
mack ma TEXT check MPU assembler files for errors
mecho mpu mpu MMF to delay and echo selected MIDI data
merge mpu mpu MMF to combine MPU data streams
mfm mpu mpu graphic wavesample editor/generator
mg midi midi read raw MIDI through MPU-401
midimode mpu mpu MMF to defeat ‘‘running status’’
mirbut CLA mpu UTG Ensoniq Mirage button pushes



Little Music Language Tools
mirpar mpu mpu graphic interface to get/set Ensoniq Mirage parameters
mirset mpu mpu get/set Ensoniq Mirage parameters
mixer MOUSE mpu graphic MIDI mixer controller front end
mixer_sa MOUSE mpu graphic MIDI mixer controller, stand-alone
mixplay midi,mpu /dev/mpu combine MIDI & MPU data and play it
mjoin mpu mpu MMF to join overlapped notes
mkcc CLA cc AMC chord chart generator
mozart CLA mpu AMC based on the musical dice game
mpp * * music file preprocessor
mpu2m mpu m convert MPU data to M format
mpu2midi mpu midi convert MPU to untimed MIDI
mpu2pc mpu mpu calculate pitch change track from MPU data
mpu2smf mpu smf convert MPU to SMF
mpuartin midi midi read and filter raw MIDI from MPU-401
mpuclean mpu mpu MMF to condense MPU data
mpumon mpu ma split MPU data stream into MPU and MA streams
mustat vmstat mpu audio operating system monitor
mut2m mut m convert MUT files to M files
mut2mpu mut mpu convert MUT files to MPU data
muzak TEXT mpu converts ascii text to notes
notedur mpu mpu MMF to manipulate note durations
numev mpu TEXT provide statistics about an MPU file
p0l grammar mpu AMC based on 0L system grammars
pbend CLA mpu UTG MIDI pitch-bend commands
pbendseq CLA mpu UTG interpolated sequences of MIDI pitch-bend commands
pharm mpu mpu MMF to add parallel harmonization
phonemes TEXT TEXT converts ascii text to ascii phoneme codes
play mpu /dev/mpu play MPU data through the MPU-401
pseq CLA mpu AMC of logo sound sequences
ra ma mpu assemble MPU assembler files
record /dev/mpu mpu input interface to MPU-401
retro mpu mpu MMF to generate retrograde melody
rpt mpu mpu MMF to repeat sections of MPU data
rtloop mpu midi convert MPU to timed MIDI (in ‘‘real-time’’)
scat mpu DT convert MPU data to scat for voice synthesizer
sd2m.awk sd m convert SD files to M files
select mpu mpu MMF to extract specified events from MPU data
sing mpu DT generate voice commands from MPU data & phonemes
sinst CLA mpu UTG MIDI program change and sample data
slur mpu mpu MMF to substitute pitch-bend for key-off/on
smf2mpu smf mpu convert SMF data to MPU data
stats mpu TEXT provide statistics about an MPU file
sustain mpu mpu MMF to convert sustain pedal to note duration
sxmon midi ma monitor system exclusive MIDI data from MPU-401
sxmpu midi,mpu midi,mpu send/capture MIDI system exclusive dumps
sxstrip mpu mpu MMF to strip system exclusive ccommands
tab2mpu tab mpu convert TAB files to MPU data
tempo mpu mpu MMF to change tempo
tmod mpu mpu MMF to apply a tempo map
tonerow CLA mpu AMC of 12-tone sequences
transpose mpu mpu MMF to transpose pitches
trim mpu mpu MMF to remove silent beginnings & endings



Little Music Language Tools
tshift mpu mpu MMF to shift MPU data in time
txeld midi mpu load voices/performances into TX/DX edit buffer
txget mpu midi read voices/performances from TX/DX synths
txload midi mpu load and try TX/DX voices
txportamento midi mpu set portamento parameters in TX/DX synths
txput midi mpu store voices/performances in TX/DX synths
txvmrg midi midi UTG 32-voice TX816 dumps from 1-voice dumps
umecho midi midi loop back MIDI data through a serial port
ump mpu midi convert MPU data to MIDI through a serial port
unjust mpu mpu MMF to add random variation to timing
vegplot midi SUN UTG plots of DX7/TX7/TX816 envelopes
velpat mpu mpu MMF to apply a velocity pattern to key-on events
vget mpu midi read voices from DX7/TX7/TX816
vmod mpu mpu MMF to apply a dynamic (volume) map
voxname midi TEXT UTG names for DX7/TX7/TX816 voices
vpr midi TEXT UTG parameter listings from DX7/TX7/TX816 voices
vput midi mpu store voices in DX7/TX7/TX816

Abbreviations used in the table:
AMC algorithmic music composition
AMCGI algorithmic music composition with a graphic interface
CLA command line arguments
DT commands for the DecTalk DTC01 speech synthesizer
MMF MPU to MPU filter
MOUSE graphic input
SUN suntools graphic output
TEXT general ascii text
UTG ‘‘utility to generate’’



APPENDIX C − TECHNICAL NOTES ON THE AUDIO EXAMPLES

One of the reasons sometimes given for preferring records to compact disks is the lack of cover art,
technical details, and liner notes in the compact disk’s smaller format. In that this paper could be viewed as
a massive set of liner notes for less than 20 minutes worth of compact disk, I would be remiss indeed to
leave out the technical details.

Some details apply to all (or almost all) of the audio examples; rather than mention them over and
over, I’ll include them here and ignore them in the individual descriptions.

In all the examples the MIDI data was generated and manipulated on a Sun Workstation (both a 386i
and a 3/160 were used at various times) and output through a Roland MPU401 interface to a bevy of MIDI-
controlled equipment. The sounds generated by the synthesizers were mixed on a Ramsa WR8118 mixing
board and recorded in stereo on a Sony PCM2500 digital audio tape recorder at a sampling rate of 48k. In
most of the examples a little reverberation was added using a Lexicon PCM70 effects processor. In a few
of the examples a slight 60/120 Hz hum can be heard, resulting from having the computer equipment on a
different phase of the three-phase electrical power than the synthesizer equipment. This was later corrected
but it sneaked through on a few examples (my apologies).

Many of the technical notes mention the tempo at which the associated example was played. In most
cases where no mention is made, the tempo was 100 quarter notes per minute, commonly specified as
‘‘M.M. 100.’’9

Note that the page numbers given in the references below refer to the page on which the audio exam-
ple is first mentioned (and not to any figures that may be named in the reference).

1. C major scale (three times) from MIDI data in Figure 2, p. 5 − 0:10
In this example the data is first played in its pure MIDI form, without any timing information; as a result,

the notes are separated by about 2 milliseconds (3 MIDI bytes to turn the note on and 3 bytes to turn it off at a rate
of 31,250 bits per second or 0.32 milliseconds per byte). For the second and third playings, the MIDI data was con-
verted to MA form, time-tags were added with the text editor vi, and the result was assembled with axtobb (thereby
converting it to MPU format). The synthesizer used here is a Yamaha DX7II; the voice used is ‘‘Dual Piano.’’.

2. Tiny example of MPU data shown in Figure 3, p. 5 − 0:02
This little snippet is played on a Yamaha TX816 using all eight modules to produce the various different as-

pects of the piano sound (e.g. ‘‘Hammer Noise’’, ‘‘Upper Octave Ring’’, ‘‘Bass End’’, and so on). The tempo used
is M.M. 70.

3. Westminster chimes (from MA example in Figure 8, p. 10) − 0:19
This example is played on a Yamaha DX7II using a modification of a voice that appeared on the first mem-

ory cartridge supplied with the original DX7 called ‘‘TUB ERUPT’’. A brief note (as in our example) sounds like a
tubular bell, while a held note generates a swelling tone.

4. First measure of Prelude #11 of the Well−Tempered Clavier, from MUT data (Fig.15, p. 16) − 0:04
Although the brevity of this example makes it sound a little awkward, it is indeed, the first measure of Pre-

lude 11. Novice musicians may count what seems to be two measures of 3/4 time, but it is a single measure of 12/8.
The voice used is ‘‘Dual Piano’’ on a Yamaha DX7II, the tempo is M.M. 200 (two hundred eighth notes per minute).

5. Two reggae vamps generated (in MUT) by the shell file in Figure 16, p. 16 − 0:30
This audio example is, literally, the result of two consecutive executions of the shell file. The two MUT da-

ta files created by the shell file were fed to mut2mpu creating two MPU files that were then concatenated (using cat)
and played (using play). The drum sound comes from a Yamaha RX5 drum machine; the guitar sound is from an
Ensoniq Mirage with a standard electric guitar sample; the bass sound is from a Yamaha TX816 (it was run through
a YAMAHA SPX90 effects processor using the ‘‘Symphonic’’ patch to make it sound more electric).

6. ‘‘Teddy Bear’s Picnic’’ from M format data in Figure 17, p. 18 − 0:08
Four TX816 modules, each running a different horn voice (‘‘Mellow Horn 1,’’ ‘‘Mellow Horn 2,’’ ‘‘Bright

Horn 1,’’ and ‘‘Bright Horn 2’’), were used to give some spatial separation to the parts; the bass and lead are in the
center of the sound field while the tenor and baritone are on opposite sides. Note the dynamics change in the second

9 The German inventor Johann Nepomuk Maelzel devised the metronome in the early nineteenth century. It’s a
minor point, but ‘‘M.M.’’ stands for ‘‘Maelzel Metronome’’ not ‘‘metronome marking’’ as often supposed.



line, reminiscent of barbershop styling (this example was stolen from the vocal arrangement used by the band
‘‘Metropolitan Opry’’). The tempo here is 80 beats per minute.

7. ‘‘Samba Batucada’’ from DP data in Figure 18, p. 20 − 0:11
There are hundreds of different variations of the Samba; this one is a classic variation known as ‘‘Batuca-

da,’’ learned from Birger Sulsbruck’s excellent book [SULSBR82]. The tempo is M.M. 190.

8. ‘‘Departure Tax’’ from SD data in Figure 19, p. 21 − 0:13
Although this particular arrangement was written for two mandolins and a violin, none of the available syn-

thesizer voices created a credible mandolin for melodic playing (later examples successfully use guitar voices to
simulate mandolin chording, however), so the instrumentation was changed to a combination that could only be real-
ized with synthesizers. Each part is played by two instruments (the usual name for this is ‘‘stacking’’), a guitar and a
vibraphone. For each part, the timing of the notes was slightly randomized to simulate the slight variations charac-
teristic of human playing. The high part (‘‘Scott’’) was played on an Ensoniq Mirage (loaded with the ‘‘Nylon Gui-
tar’’ sample from their disk 6.0) on the left channel and a DX7II ‘‘Stereo Vibraphone’’ voice (on both channels).
The lead part (‘‘Peter’’) was played on two Ensoniq Mirages (loaded with the ‘‘Nylon Guitar’’ sample), one on each
stereo channel, and a DX7II ‘‘Stereo Vibraphone’’ (on both channels). The low part (‘‘Paul’’) was played on an En-
soniq Mirage (loaded with the ‘‘Nylon Guitar’’ sample) on the right channel and a DX7II ‘‘Stereo Vibraphone’’ (on
both channels). In reality, only three synthesizers were used, a Mirage playing the high and lead parts into the left
channel, a Mirage playing the low and lead parts into the right channel, and a DX7II playing all the parts into both
channels. The result is that the high and low parts are on opposite sides with the lead part in the middle and slightly
louder than the others.

9. ‘‘Empty Bed Blues’’ accompaniment from CCC data in Figure 21, p. 23 − 0:29
The mix on this example is intentionally heavy on the guitar (or light on the vibes) to focus attention on the

accompaniment generated from CCC data. The vibes part was simply added by hand to give an idea of the reason
for wanting an accompaniment (i.e. as a ‘‘serving suggestion’’). The guitar sound is a combination of a TX816 gui-
tar voice (‘‘Electric Guitar’’) with a little bit of acoustic piano (TX816 ‘‘Piano R’’) to add body. The vibes voice is
from a DX7II (‘‘Stereo Vibraphone’’).

10. IMG/1 boogie-woogie accompaniment from CC data, p. 25 − 0:33
IMG/1 actually generates an entire boogie-woogie piece including a piano right-hand part, but it is turned

down in this example to let the part that was directly generated from CC data come through more clearly (although
the right-hand part is composed to fit the CC data, the data does not uniquely define it). The drum part is played by
an RX5 drum machine; the bass part (‘‘Funk Bass 3’’) and piano left-hand part (‘‘Acoustic Piano r’’) are played by a
TX816; the piano right-hand part is played by a DX7II using the ‘‘Rich Grand Piano’’ voice. The tempo is M.M.
178.

11. IMG/1 samba accompaniment from CC data, p. 25 − 0:46
IMG/1 offers a choice of three different rhythm parts for the samba; a single-drummer trap-set, a small latin

rhythm section, and a full-blown, Desi Arnaz latin percussion section. This examples uses the small latin rhythm
section played on an RX5 drum machine. The bass and piano sounds are generated using the same synthesizers and
voices as the previous example. The melody line is played on the DX7II’s ‘‘Stereo Vibraphone’’ voice. All the parts
derive from a CC data file generated by IMG/1 (using the program mkcc); the piano, bass, and drums are determinis-
tic, while the melody is simply constrained to fit the CC data.

12. IMG/1 bluegrass accompaniment from CC data, p. 25 − 0:28
The bluegrass banjo turns out to be a difficult instrument to simulate with a synthesizer (it as, after all, a

cross between a guitar, a drum, and a salad bowl). Its nonlinear response to both volume and pitch changes, com-
bined with its bright overtone spectrum, make it a difficult instrument to reproduce with a sound sampler as well.
Nonetheless, the banjo sound used here is a sampled voice played on the Ensoniq Mirage (it is described further in
§21 of these technical notes). The guitar and bass voices are ‘‘Old Spanish’’ and ‘‘Funk Bass 3’’ on the TX816.

13. Three styles of accompaniment generated from CC data in Figure 24, p. 25 − 1:06
The voices and synthesizers used for the boogie-woogie part of this example are identical to those used for

the previous boogie-woogie example. The samba part uses the same voices as the previous samba example except a
flugelhorn voice on the Korg M1 is used in place of the vibraphone voice on the DX7II. The bluegrass part also uses
the same voices as the previous bluegrass example. One of the exciting aspects of using parametric algorithms to



compose music is the ability to mix parameters from different styles. IMG/1 generated the CC data in Figure 24 to
meet a specification for a short piece of boogie-woogie. It was then simply relabeled (using a text editor) as ‘‘sam-
ba’’ (and then ‘‘bluegrass’’) and given back to IMG/1 to interpret. In this case the harmonic structure fit well into
the other styles and the resulting music was appropriate to each style.

14. ‘‘Pecusa Waltz’’ fragment in Figure 28, generated from GC data, p. 30 − 0:17
This example is played using the sampled banjo voice on the Ensoniq Mirage. The two speeds were

achieved by playing the file (‘‘lick0.lab’’) with varying tempo specifications: play -t93 lick0.lab; play -t146 lick0.lab.
As in much arpeggiated music, different kinds of motion seem to predominate at different speeds; at the slow speed
a linear melody with repeats is heard, while at the faster speed the impression is of multiple voices moving in synco-
pated counterpoint.

15. C major scale from TAB data in Figure 29, p. 30 − 0:02
This example is played on the DX7II using a rather squeaky guitar setting that combines two guitar voices,

‘‘Titeguitar’’ (the squeaker) and ‘‘PickGuitar.’’ Much of what distinguishes a really believable synthesizer sound
from an unconvincing one is the so-called ‘‘stuff’’ in the voice. ‘‘Stuff’’ includes the breathy chiff sound that starts a
flute note or the thump of the hammer striking a piano string. Tw o important pieces of ‘‘stuff’ for a guitar are the
pick noise (provided by ‘‘PickGuitar’’) and the squeak of fingers changing position on the fingerboard. ‘‘Titeguitar’’
provides such a squeak, but it appears everywhere regardless of whether any finger motion would be required or not.
This should not be surprising since the synthesizer can’t tell how you intend the ‘‘fingering’’ to be. One of the ad-
vantages of the TAB data format is that you can specify some of this information. Then by controlling two synthe-
sizers, one that squeaks and one that doesn’t, you could accurately simulate this important ‘‘stuff.’’

16. Drum part generated from DDM data in Figure 30, p. 32 − 0:20
Note that the audio example is different from the sample output shown in Figure 31 although both are de-

scribed by (and were generated from) the DDM file in Figure 30. This example was played on an RX5 drum ma-
chine at a tempo of M.M. 100.

17. Melody generated from DDM data in Figure 32, p. 34 − 0:20
Again, the audio example is different from the notated example (Figure 33), but it is derived from the same

DDM file. This is played on the DX7II’s ‘‘Stereo Vibraphone’’ voice at a tempo of M.M. 100.

18. Scat part generated from DDM data with an ‘‘indian’’ scale, p. 34 − 0:31
The drone is a modification of a standard DX7 sitar voice; the modification makes the sound have a longer

decay time. I felt a little strange playing this part since it’s customary for sitar players to have one of their students
play the drone for them at concerts − it put my relationship with Eedie in a new light. Her part is ‘‘played’’ on a
DecTalk DTC01 speech synthesizer.

19. ‘‘Starchastic 12264’’ generated from DDM data, p. 36 − 2:31
The trap-set drum sounds were produced by a Yamaha RX5 drum machine and the latin sounds were pro-

duced by a Yamaha RX21L. The bass was generated by a single Yamaha TX816 synthesizer module using the voice
‘‘Funk Bass 3.’’ The first lead voice is a trumpet sound (‘‘Trumpet’’) from a Korg M1 synthesizer. The second lead
sound comes from a pair of TX816 modules (one on each stereo channel) using the ‘‘Plucked 1’’ and ‘‘Plucked 2’’
voices.

The drum parts were generated by the program ddm. During the latin drum solo the output from three ex-
ecutions of ddm are merged, one using the trap-set specification file and two using the latin specification file. This
means that at most there can be three drum sounds at once (i.e. three one-armed drummers could play this part, in
theory). The bass part was also generated by ddm, using mpp to select the appropriate sections of the specification
file to use for each part. Melodic lines were also generated by ddm, in some cases as four bar phrases that are re-
peated later. See Appendix D for a listing of the DDM files used.

20. ‘‘Some Velvet Morning’’ performed by Eedie & Eddie and the Reggaebots, p. 37 − 3:15
Although the DecTalk speech synthesizers do an amazing job of making credible speech from ascii text (a

difficult task) and can even imitate much of the characteristics of singing, their timing control is too crude to syn-
chronize well with music. The vocal parts for this piece were recorded digitally on a Macintosh computer equipped
with Digidesign’s AudioMedia™ digital sound hardware and software. They were then edited with a cut-and-paste
editor and combined into a stereo pair of tracks. The instrumental parts were then recorded onto the same machine



and merged with the vocal parts (instrumentation the same as for the reggae vamp example). Finally, the result was
played back and recorded on the DAT recorder. Thus, the vocal parts started out as ascii and MIDI data, were con-
verted to audio by a DecTalk, were converted to 44.1 KHz digital by AudioMedia, were converted back to audio by
AudioMedia, were converted to 48 KHz digital by the DAT machine, were converted back to audio to be mastered,
were converted back to 44.1 KHz digital on the compact disk, and will be converted back to audio by your compact
disk player. It will be amazing if there’s anything left of them.

Eddie’s voice is based on the standard DecTalk voice ‘‘Perfect Paul.’’ Paul’s voice was altered by setting
the pitch range to the maximum (250) and raising the average pitch to 160 Hz. Speech rate is usually set to 220.
Eedie’s voice is based on the voice called ‘‘Beautiful Betty’’ with the pitch range raised to 200. Eedie and Eddie are
distant ancestors of the shipboard computers manufactured by the Sirius Cybernetics Company [ADAMS70].

As mentioned in the main body of text, the bass and guitar parts were specified as MUT format files (one
and three pages, respectively, with comments) and the drum part was specified as a DP format file (two pages with
comments). Both the lyrics and the musical information for the vocal parts was specified by M format files with lib-
eral use of the music preprocessor mpp to carry out the slice-and-dice arrangement without needless replication of
lyrics or music.

The major programs used in assembling this piece were: bars (to cut out selected measures, a la head and
tail), chmap (to move MPU data among MIDI channels), cntl (to set controller values for parametric instrument
voices), dp2mpu (to convert DP to MPU format for the drums), inst (to include automatic voice selection in the in-
strumental files), m2mpu (to convert M to MPU format for the vocals), make (to keep all the pieces up to date),
merge (to combine tracks of MPU data), mpp (to perform macro replacement, repeats, and sectioning), mut2mpu (to
convert MUT to MPU format for guitar and bass), phonemes (to convert lyrics to phonemes), and sing (to convert
phonemes and MPU format to DecTalk coding).

21. ‘‘Pecusa Waltz’’ in the long form, p. 37 − 3:33
The lead vocal was sung by the author while the two harmony parts were sung by Karen Anderson (from

the Canadian Ethno-confusion group ‘‘the Nyetz’’). The vocal parts were recorded on a Fostex Model 80 tape deck
and synchronized with the MIDI playback using the Roland MPU401 interface’s tape sync signal. Mixing levels
were controlled by Iota Systems MidiFaders™, in turn controlled by MIDI data generated by cntlseq. The wind
sounds and the vocal chorusing at the beginning were provided by an Eventide H3000B Harmonizer (MIDI con-
trolled).

The banjo voice was created by digitally ‘‘sampling’’ the author’s banjo (an Epiphone ‘‘Professional’’ tenor
banjo that has been converted into a five string) on an Ensoniq Mirage sampler; only three digitally recorded notes
were used to generate all the sounds used for the banjo part. The melodies for two of the banjo parts (a verse and a
chorus each) were generated from TAB files, all the rest of the parts were improvised by the lick program, using the
GC files that generated the guitar accompaniment to define the harmonic structure. The bass voice used the Mirage
acoustic bass sample and was specified as TAB data. The guitar used the voice ‘‘Guitar 1’’ on the Korg M1 synthe-
sizer and was specified as GC data. The mandolin used the voice called ‘‘Jazz Guitar’’ on the TX816 and was also
specified as GC data. The fiddle used the TX816 voice ‘‘Fiddle’’ and was specified as a combination of MA and
TAB files. Some of the strange sounds at the beginning are the result of pitch bend commands sent to the fiddle
voice. Synchronization of the vocal parts while recording was provided by melodic data encoded in M format and a
click track specified as DP data (that the particularly alert listener may be able to hear leaking onto the vocal track in
one or two spots).

The tempo starts out at M.M. 145 and accelerates smoothly to M.M. 155 in the middle of the piece using
tmod to generate the accelerando.



APPENDIX D − DDM FILES FOR ‘‘STARCHASTIC $$’’

# RX5 "trap-set" Drum part
2/45 80:D:2:0:96 BD1
2/49 80:U:2:0:96 SD2
2/52 50:D:4:0:64 SD1
2/57 50:U:4:0:80 HHC
2/46 45:U:8:0:64 RIM2
2/47 45:D:8:0:112 TOM4
2/54 45:U:8:0:64 CLAPS
2/55 50:U:8:0:64 COWBELL
2/59 50:U:8:0:64 HHO
2/62 60:D:16:0:48 RIDEcup
2/57 80:D:16:0:72 HHC

# RX21L "Latin" Drum Solo
4/65 40:D:2:0:90 CONGO
4/69 50:U:2:0:65 TIMBL
4/64 50:D:4:0:72 CONGL
4/67 60:U:4:0:68 BONGL
4/79 30:D:8:0:48 WHST2
4/68 33:U:8:0:70 BONGH
4/72 40:D:8:0:64 COWBL
4/66 67:U:8:0:72 CONGM
4/74 80:D:8:0:70 AGOGL
4/70 50:D:16:0:80 TIMBH
4/69 60:U:16:0:65 TIMBL
4/65 50:D:16:0:48 CONGO
4/64 65:U:16:0:48 CONGL
4/76 33:D:16:0:33 CUICL
4/77 33:U:16:0:68 CUICH
4/75 60:D:16:0:64 AGOGH
4/73 75:D:16:0:64 CLAVE
4/78 50:U:16:0:52 WHST1

# Minor Key Bass Line
#SCALE C,D,Eb,E,G,A
#LIMITS E0,C3
3/A1 33:D:2:4:64 root
3/E1 33:U:2:4:64 fifth
3/+1 40:D:4:4:56 up 1 step
3/-1 45:U:4:4:56 down 1 step
#ONLYSECT 0
3/C2 33:D:8:4:56 third
3/+2 50:D:8:4:56 up 2 steps
3/-2 50:U:8:4:56 down 2 steps

# Lead Lines
#SCALE C,D,Eb,E,G,A,B
#LIMITS E2,C5
1/A3 33:D:2:15:72 root
1/E3 60:D:2:15:64 fifth
1/0 50:D:4:31:56 repeat note
1/-1 50:D:8:31:72 down 1 step
1/+1 50:U:8:31:64 up 1 step
1/G3 25:U:4:31:64 leading
1/+2 30:D:16:7:72 up 2 steps
1/-2 30:U:16:7:64 down 2 steps
1/+1 40:D:16:7:48 up 1 step
1/-1 40:U:16:7:48 down 1 step
1/0 40:U:16:7:48 repeat note



APPENDIX E − LYRICS FOR THE EXAMPLES

Some Velvet Morning
Lee Hazelwood

Some velvet morning when I’m straight.
I’m gonna open up your gate.
And maybe tell you ’bout Phaedra.
And how she gav e me life.
And how she made it end.
Some velvet morning when I’m straight.

Flowers growing on a hill.
Dragon flies and daffodills.
Learn from us, very much.
Look at us, but do not touch.
Phaedra is my name.

Some velvet morning when I’m straight.
I’m gonna open up your gate.
And maybe tell you ’bout Phaedra.
And how she gav e me life.
And how she made it end.
Some velvet morning when I’m straight.

Flowers are the things we know.
Secrets are the things we grow.
Learn from us, very much.
Look at us, but do not touch.
Phaedra is my name.

Some velvet morning when I’m straight.
Flowers growing on a hill.

I’m gonna open up your gate.
Dragon flies and daffodills.

And maybe tell you ’bout Phaedra.
Learn from us, very much.

And how she gav e me life.
Look at us, but do not touch.

And how she made it end.
Phaedra is my name.

Some velvet morning when I’m straight.

© Lee Hazelwood Music Co. ASCAP

Pecusa Waltz
Peter Langston

The high seas have almost run dry
Mount Everest is down to a molehill

(my oh my)
The hot sun has started to swell,

and I’ll bet it’s damn near
freezing down in hell.

The high seas have almost run dry
Mount Everest is down to a molehill

(my oh my)
The hot sun has started to swell,

and I’ll bet it’s damn near
freezing down in hell.

The cows, the cows are all coming home
and then this universe will start fading.

But love, sweet love is our metronome
so waltz me Pecusa ’til then.

A Big Bang is coming around
but we’ll drown it out with a whimper,

(what a sound)
So make love and soar until you burst

Of four horsemen why not
pacify the first?

The cows, the cows are all coming home
and then this universe will start fading.

But love, sweet love is our metronome
so waltz me Pecusa ’til then.

The high seas have almost run dry
Mount Everest is down to a molehill

(my oh my)
The hot sun has started to swell,

and I’ll bet it’s damn near
freezing down in hell.

The cows, the cows are all coming home
and then this universe will start fading.

But love, sweet love is our metronome
so waltz me Pecusa ’til then.

© 1988, Peter Langston



LIST OF AUDIO EXAMPLES

1. C major scale (three times) from MIDI data in Figure 2, p. 5 − 0:10
2. Tiny example of MPU data shown in Figure 3, p. 5 − 0:02
3. Westminster chimes (from MA example in Figure 8, p. 10) − 0:19
4. First measure of Prelude #11 of the Well−Tempered Clavier, from MUT data (Fig.15, p. 16) − 0:04
5. Two reggae vamps generated (in MUT) by the shell file in Figure 16, p. 16 − 0:30
6. ‘‘Teddy Bear’s Picnic’’ from M format data in Figure 17, p. 18 − 0:08
7. ‘‘Samba Batucada’’ from DP data in Figure 18, p. 20 − 0:11
8. ‘‘Departure Tax’’ from SD data in Figure 19, p. 21 − 0:13
9. ‘‘Empty Bed Blues’’ accompaniment from CCC data in Figure 21, p. 23 − 0:29
10. IMG/1 boogie-woogie accompaniment from CC data, p. 25 − 0:33
11. IMG/1 samba accompaniment from CC data, p. 25 − 0:46
12. IMG/1 bluegrass accompaniment from CC data, p. 25 − 0:28
13. Three styles of accompaniment generated from CC data in Figure 24, p. 25 − 1:06
14. ‘‘Pecusa Waltz’’ fragment in Figure 28, generated from GC data, p. 30 − 0:17
15. C major scale from TAB data in Figure 29, p. 30 − 0:02
16. Drum part generated from DDM data in Figure 30, p. 32 − 0:20
17. Melody generated from DDM data in Figure 32, p. 34 − 0:20
18. Scat part generated from DDM data with an ‘‘indian’’ scale, p. 34 − 0:31
19. ‘‘Starchastic 12264’’ generated from DDM data, p. 36 − 2:31
20. ‘‘Some Velvet Morning’’ performed by Eedie & Eddie and the Reggaebots, p. 37 − 3:15
21. ‘‘Pecusa Waltz’’ in the long form, p. 37 − 3:33


