
IMG/1
An Incidental Music Generator

Peter S. Langston

Bellcore
Morristown, New Jersey

April 6, 1990

ABSTRACT

Machines can compose music. Music composition (by machine) requires the solu-
tion of a number of difficult problems in the fields of algorithm design, data representa-
tion, human interface design, and software engineering in general. Although the auto-
mated generation of major symphonic pieces, programme music, or other musical forms
that require complex semantic content has yet to be achieved, the automated generation of
incidental or background music (e.g. as used in video production soundtracks) is within
the realm of current technology.

This report describes ‘‘IMG/1’’, a system of programs designed to produce short,
complete pieces of music with an explicitly specified duration and musical style. IMG/1
requires no musical expertise on the part of the user and can generate a virtually infinite
number of different pieces in any giv en style. The user’s task is simply to define the
duration and style parameters and then select an acceptable piece. Music generated by
IMG/1 has been succesfully used as parts of several Bellcore video productions.

IMG/1 − An Incidental Music Generator

Introduction
Computer programs are available to aid musicians in the composition of music (e.g.

‘‘Music Mouse’’ (SPIEGE85), ‘‘Jam Factory’’, ‘‘M’’ (INTELL88), and others); but there
are circumstances in which a person with little or no specific musical expertise (i.e. not a
musician) needs to be able to produce simple musical works fitting a simple set of crite-
ria. For example, a research chemist may want to assemble a videotape presentation
showing how some new process works. There may be long sequences with no narration
− while the solution changes color or the chart recorder runs. Or perhaps someone is
compiling a series of interviews that share a common title/credit sequence. In these
sequences some background or incidental music would be a perfect accompaniment and
would lend continuity. The music required need not be very sophisticated or elaborate; it
merely needs to have the right ‘‘style’’ and be the right length. However, unless the
project has a very large budget, or the person making the video happens to be a musician
with recording facilities available, the resulting sound track is likely to be silence or
something pirated from a commercial recording.

Researchers have been exploring algorithmic composition for several years
(HILLER70, HILLER81, BOLOGN83, DODGE85, LOY89) but as Kemal Ebcioglu says
in a recent article on harmonizing chorales: ‘‘It seems that musical composition is a hard
mental task that requires a substantial amount of knowledge, and any serious attempt to
simulate ‘noncomputer’ music composition on the computer would have to face the task
of constructing a formal model of considerable complexity. We hav e found that even the
algorithmic representation of the knowledge underlying the seemingly simple Bach
chorale style is a task that already borders the intractable.’’ (EBCIOG88)

Recent work at Bellcore (LANGST86, LANGST88, LANGST89a, LANGST90) has
produced short pieces that, although devoid of semantic content, adequately embody the
syntactic structures of music and result in acceptable music. ‘‘IMG/1’’ is a set of pro-
grams built on this work that extend it to address a range of musical styles. The central
goal in IMG/1 is to allow musically naive users to produce pieces of background music of
arbitrary length using algorithmic composition techniques.

Simplicity was an important design goal for IMG/1; the intended users, computer-
and music- novices, must be able to compose and play an ‘‘original’’ piece of music with
little or no training. As a result, IMG/1 is extremely easy to use; with a few clicks of the

IMG/1 - An Incidental Music Generator

mouse button it can compose and play an ‘‘original’’ piece of music. One mouse click
selects a musical style, another mouse click sets the tempo, and typing a length (in sec-
onds) determines the exact duration of the piece.

Most people are more sophisticated in listening than in creating music (‘‘I don’t
know anything about making music, but I know what I like’’). Since IMG/1 can generate
arbitrarily many variations, all different (and, thanks to the built-in musical knowledge,
surprisingly pleasant), the user need only pick from among them. The dozens of parame-
ters that provide detailed control of the composition process default to reasonable values
if not set explicitly by the user, but may be manipulated as expertise with IMG/1 and its
music increases.

Melodies are generated by a set of algorithms with expert knowledge of various
musical styles. The techniques employed range from probabilistic traversal of graphs to
simulation of the mechanics of a specific instrument. In all cases the melody generation
uses some stochastic information (i.e. none of the algorithms are deterministic). Accom-
paniments are assembled by transforming a set of stock fragments to fit the progression of
the overall harmonic structure. Although this scheme is deterministic, the generation of
the harmonic structure is not; thus the accompaniment also changes for each piece (unless
the user specifically asks to keep it fixed).

Music generated by IMG/1 has been used as background music in videotaped tech-
nical demonstrations, as the complete score for an MTV-like overview of a catalog of
technical videotapes, and as a ‘‘live’’ demonstration at a product introduction by a major
minicomputer manufacturer.

Structure
IMG/1’s software structure is diagrammed in Figure 1. IMG/1 makes heavy use of

the Unix® operating system’s ‘‘pipe’’ facility to interconnect independent programs into
a processing pipeline. In Figure 1 the rectangles represent separate processing steps
(either individual programs or pipelines of programs) while the ovals represent data files.

The main entry is a program called ‘‘bellscore’’ whose function is to communicate
with the user. The initial settings of parameters and the characteristics of the synthesizers
attached to the system are read from a ‘‘setup’’ file at startup time. Bellscore displays the
current parameter settings, allows the user to change parameters, and invokes the other
modules as appropriate. The three primary parameters that bellscore controls are STYLE,
LENGTH, and TEMPO. STYLE is a choice from a menu of known musical styles (e.g.
bebop, bluegrass, etc.). LENGTH is the duration of the piece in seconds, video frames,
or a combination of the two. TEMPO is the beat rate in beats per minute.

The program ‘‘mkcc’’ determines the harmonic structure of the piece. When the
user selects the COMPOSE button, bellscore invokes mkcc to determine the length of the
piece in bars; this may require adjusting the specified TEMPO parameter so that an even
number of bars will take exactly the duration specified by the LENGTH parameter. Mkcc
then determines the harmonic progressions in the piece based on the requirements of the
selected style, and writes them out in an ascii form closely approximating the chord
charts used by studio musicians. Having the harmonic structure expressed in a form eas-
ily read by humans not only facilitates debugging, but allows more sophisticated users to
specify harmonic progressions directly.

Accompaniments are generated by the program ‘‘acca’’. Once mkcc has created the
chord chart file, acca reads that file and produces an accompaniment based on it that is
appropriate for the specified style. For some styles the appropriate accompaniment is
silence, for others the accompaniment may vary from bass, piano chords, and drums, to a
simple Alberti Bass line. Acca uses its ability to look ahead at future harmonic motion to

‘‘Unix’’ is a registered trademark of AT&T.

IMG/1 - An Incidental Music Generator

bellscore
user

interface

setup
data

mkcc
chord chart
generator

acca
accompaniment

generator

accl
melody

generator

play
MIDI
output

chord
chart

MIDI
data

Figure 1 — IMG/1 Software

make effective selections from a small repertoire of precomposed music segments. The
selected segments are combined and written out as time-tagged MIDI data
(MIDI89)(LANGST89a).

The program ‘‘accl’’ produces melody lines based on the chord chart file. The
melody line(s) generated may use up to three different instruments. As with mkcc and
acca, accl chooses the composition algorithm based on the current style. The algorithms
vary widely in their approaches. Accl produces time-tagged MIDI output.

When the PLAY button is selected bellscore invokes the appropriate program (speci-
fied in the startup file) to send the MIDI data to synthesizers. Typically, that program
either sends the data to the MPU401 kernel device driver or to the serial line device
driver, depending on whether the host machine is equipped with a Roland MPU-401
interface or a serial line / MIDI interface (LANGST89b).

User Interface
IMG/1 runs under the Sun Microsystems windowing system called ‘‘SunView.’’ In

its simplest use, IMG/1 displays a small window containing a set of STYLE choices, a
LENGTH value, a TEMPO slider, and a set of action buttons. IMG/1 also provides five
other control panels to allow control of detailed composition/performance parameters.

Main Control Panel
Figure 2 shows the default display when IMG/1 is first run. This will be the only window
needed by the true neophyte.

The STYLE choices are mutually exclusive; each carries with it a set of detail
parameters that may be adjusted independently. (As of this writing, ten STYLEs have
been implemented; the current goal is to have thirty-five.) LENGTH may be expressed as
decimal seconds (e.g. ‘‘23.5’’ for twenty-three and one-half seconds), as video frames at a
rate of 30 frames per second (e.g. ‘‘:705’’ for 23.5 seconds), or as a combination of both

IMG/1 - An Incidental Music Generator

Figure 2 — IMG/1 Main Control Panel

(e.g. ‘‘23:15’’ for 705 video frames). TEMPO is an approximate number of beats per
minute. TEMPO may be adjusted by mkcc in order to have an even number of measures
within the specified duration.

The COMPOSE button instructs IMG/1 to compose a piece that reflects the parame-
ter choices currently selected and store it as a temporary file. The PLAY button displays
a submenu containing all the playable pieces generated during this session, including the
last piece generated by hitting the COMPOSE button. The HUSH button stops any piece
currently playing. The SAVE button gives the most recently COMPOSEd piece a unique
name, insuring that the next COMPOSE operation won’t overwrite it (so it can be
PLAYed again later). The XYZZY button pops up further parameter windows (see
below). The EXIT button terminates the IMG/1 session.

Other Control Panels
The main control panel is the simplest possible interface to IMG/1; some users will never
need to go beyond its three parameters. For the more adventurous, however, there are five
other control panels available in IMG/1. These panels allow more detailed control of
composition and performance parameters.

Figure 3 — ‘‘Panel of Experts’’

Figure 3 shows the ‘‘PANEL OF EXPERTS.’’ This panel contains global parame-
ters and is controlled by the magic XYZZY button in the main control panel. Each of the
other detail parameter panels is controlled by a button in the PANEL OF EXPERTS (e.g.
‘‘LEAD PARAMS’’ toggles the ‘‘LEAD INSTRUMENT PARAMETERS’’ panel on and
off the screen). A REVOICE button applies parameter changes (e.g. instrument voicings)
to existing IMG/1 compositions. Buttons for loading and saving setup files allow infor-
mation about the current synthesizer setup and all modifyable parameters to be retrieved,
edited, and stored. The use of setup files makes IMG/1 both synthesizer-independent and
style-independent; the synthesizer complement can be changed simply by editing a setup
file; the style repertoire can be changed by adding code to the programs mkcc, acca, and
accl, and editing a setup file. A full description of the form of the setup file is beyond the
scope of this article, but the appendix contains an example of a typical setup file from
which much can be inferred.

The global parameters in the PANEL OF EXPERTS include: the key of the piece,
the length of the initial count-in (if any), optimization and debugging controls for the var-
ious subprograms, and the synthesizer setup description from the current setup file.

Figure 4 shows the ‘‘LEAD INSTRUMENT PARAMETERS’’ panel that is used to
set parameters for the melody generation routines. These parameters include: synthesizer

IMG/1 - An Incidental Music Generator

Figure 4 — Melody Parameters Panel

voices to be used (‘‘INST’’), MIDI channels (‘‘CHAN’’), velocity scaling (‘‘VEL’’),
octave transpositions (‘‘OCT’’), continuous controller settings (‘‘MW,’’ ‘‘BC,’’ & ‘‘FC’’),
volume scaling (‘‘VOL’’), and miscellaneous composition controls (‘‘ENERGY,’’ ‘‘PRE-
DICTABILITY,’’ & ‘‘SEED’’).

Selecting the ‘‘INST’’ button pops up a menu containing the list of voices available
on the currently selected channel. Once a voice has been selected, a few notes are played
to audition the voice. Selecting the ‘‘CHAN’’ field either cycles through the seventeen
channel possibilities (1 through 16 and OFF), or pops up a menu containing the list of
channels and associated synthesizers. The ‘‘VEL’’ slider sets a multiplicative factor for
that channel’s key velocity information. Selecting the ‘‘OCT’’ field either cycles through
the possibilities or pops up a menu of transposition choices (-2, -1, 0, +1, or +2 octaves).
The ‘‘MW,’’ ‘‘BC,’’ and ‘‘FC’’ sliders set static values for modwheel, breath, and foot
controllers. The ‘‘VOL’ ’ slider sets the channel’s volume controller level (different from
VEL which may change the timbre of the sound).

The interpretation of the composition controls is dependent on the style algorithm
(see below). Typically, ‘‘ENERGY’’ is used to control rhythmic factors such as the num-
ber of notes per measure. ‘‘PREDICTABILITY’’ is usually taken to mean the amount of
reuse of earlier themes or motifs. The different styles are free to interpret these parame-
ters in whatever way seems most logical; the goal is to be consistent with the terms
‘‘energetic’’ and ‘‘predictable’’ as commonly understood. The Random number generator
‘‘SEED’’ can either be ‘‘Fixed’’ to start at a given number (to allow repeatability) or
‘‘Random’’ to set the random number seed to a new pseudo-random value every time a
melody is generated.

Figure 5 — Bass and Chording Parameters Panels

Figure 5 shows the ‘‘BASS INSTRUMENT PARAMETERS’’ and ‘‘CHORDING
INSTRUMENT PARAMETERS’’ panels. These windows have all the parameters
described for the Melody Parameters Panel except those dealing with the random number
generator (‘‘ENERGY,’’ ‘‘PREDICTABILITY,’’ and ‘‘SEED’’). At the moment, the
assembly of the accompaniment is a deterministic process based only on the harmonic
structure of the piece (see ‘‘acca’’ below); unless (until?) the accompaniment generation
is changed to be stochastic, random number generator parameters are not needed.

Figure 6 — Drum Parameters Panel

Figure 6 shows the ‘‘DRUM PARAMETERS’’ panel. It differs from the Bass and
Chording windows in that it has no voice selection (‘‘INST’’) per se, nor does it provide

IMG/1 - An Incidental Music Generator

octave transposition options. Since some drum machines offer different ‘‘drum kits’’ that
can be selected by sending program change commands, this panel has a ‘‘PROG’’ button
that pops up a list of the drum kits (if appropriate). Some styles offer different drum
parts; for example, the SAMBA style provides three drum parts − a ‘‘basic’’ part that con-
sists of a small latin rhythm section, an alternative ‘‘alt 1’’ part that consists of a full Desi
Arnaz latin rhythm section, and a second alternative ‘‘alt 2’’ part that consists of a single
trap-set drummer doing the best he can. The other parameters are as described for the
Melody Parameters Panel.

Style Algorithms
Each style in IMG/1 is represented by three algorithms: one to generate harmonic

structure, one to generate the accompaniment, and one to generate a melody.

mkcc
As mentioned earlier, the harmonic structure of a IMG/1 composition (the output of

mkcc) is specified as a chord chart file. The chord chart file is an ascii file consisting of
control lines and data lines with (typically) four chord symbols representing the harmonic
Title 617812721
#STYLE swing
#INCLUDE "/u/psl/midi/etc/accagc.cc"
#QUANTUM quarter
#PART Lbgv
Bb / / / Eb7 / / / Bb / / / Bb / Bb /
C7 / / / F7 / / / Bb / F7 / Cm / F7 /
#PART Lbgv
Bb / / / Eb7 / / / Bb / / / Bb / Bb /
C7 / / / F7 / / / Bb / Cm F7 Bb / / /
#PART Lbgb
Eb / / / Eo / / / Bb / / / Bb / D7 /
Gm / / / Gb7 / / / F7 / / / F7 / / /
#PART Lbgv
Bb / / / Eb7 / / / Bb / / / Bb / Bb /
Cm / / / F7 / / / Bb / Bb / Bb / / /

Figure 7 — Typical IMG/1 Chord Chart

structure of each measure.
The first line in Figure 7 is a comment (because it begins with ‘‘#’’ followed by a

space) that indicates the random number kernel used to generate this particular chord
chart, coincidentally the number of seconds since midnight on January first, 1970 (GMT).
The #STYLE line defines the musical style intended; this is used by acca and accl. The
#INCLUDE line specifies a file that defines all the chord symbols used. The chord sym-
bols themselves are arbitrary sequences of ascii characters separated by whitespace. The
format of the chord definition file is described under ‘‘Chord Symbol Definition’’ below.
The #QUANTUM line in Figure 7 specifies that each chord symbol has the time value of
a quarter note. The #PART lines are essentially comment, although accl uses them to
help recognize the overall structure; (although the chords differ in the first, second, and
fourth pairs of chord lines, they are based on the same structure).

IMG/1 - An Incidental Music Generator

Mkcc’s first task is to determine the length of the piece to be generated. Associated
with each STYLE is a duration quantum (not related to the #QUANTUM line in the
chord chart); any piece must be an integral multiple of this duration. In order to force an
integer multiple, mkcc will adjust the TEMPO specification since the LENGTH specifica-
tion must be met exactly. The most common duration quantum is two bars; the more
free-form styles, e.g. ‘‘sequence’’ hav e shorter values. Longer duration quantum values
assure more graceful overall harmonic structures, but require greater lattitude in adjusting
the TEMPO specification.

Once mkcc has determined the length of the piece it then divides the piece into sec-
tions as is appropriate for the specified style. As an example, if the piece is in the ‘‘blue-
grass’’ style, mkcc first checks whether the length (in bars) can be expressed as 16n+9
(where n ≥ 1); if so, it chooses a general 16 bar pattern that has an accompanying 8 bar
reprise, repeats the 16 bar part n times, appends the 8 bar reprise, and finally, appends a
single bar ending. The chord patterns include choices of alternative chords or chord
sequences, thereby providing variety in the sequences generated. If the length doesn’t fit
16n+9, then 16n+1 is tried. Failing that, the following are tried in order: 12n+1, 12n,
8n+2, 8n, 4n+1, 4n, 5n+1, and 5n. These patterns characterize a large fraction of blue-
grass chord structures; (perhaps the only surprise here being the 5n, which turns out to be
a stylistically stretched 4n). If a match still has not been found, a single bar introduction
is generated, the length is reduced by one bar, and the matches are tried again against the
new length.

Other styles use different algorithms. The algorithm for ‘‘swing’’ is similar to that
for ‘‘bluegrass’’, but the pattern lengths tend to be longer and a two bar ‘‘turnaround’’
sequence is the preferred filler used to adjust lengths. In some cases no harmonic struc-
ture is generated by mkcc (e.g. the so-called ‘‘tone row’’ style). In these cases the chord
chart simply contains tonic chord symbols to indicate the planned duration of the piece.

Chord Symbol Definition

name group trans
#CHORD Cm tri 0,0,0,0,-1,0,0,0,0,-1,0,0
#CHORD C7 dom7 0,0,0,0,0,0,0,0,0,0,0,0
#CHORD D7 dom7 2,2,2,2,2,2,2,2,2,2,2,2
#CHORD Eb tri 3,3,3,3,3,3,3,3,3,3,3,3
#CHORD Eb7 dom7 3,3,3,3,3,3,3,3,3,3,3,3
#CHORD Eo dom7 4,4,4,4,3,4,4,3,4,4,3,4
#CHORD F7 dom7 5,5,5,5,5,5,5,5,5,5,5,5
#CHORD Gb7 dom7 6,6,6,6,6,6,6,6,6,6,6,6
#CHORD Gm tri 7,7,7,7,6,7,7,7,7,6,7,7
#CHORD Bb tri -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2

Figure 8 — Excerpts from ‘‘/u/psl/midi/etc/accagc.cc’’

Figure 8 shows the definitions of the chord symbols used in the preceding chord
chart. Each #CHORD line contains 3 entries: the symbol itself, the chord group (the
chord upon which this chord is based, tri ≡ major triad, dom7 ≡ dominant seventh, aug5 ≡
augmented fifth, dim5 ≡ diminished fifth), and the transpositions for each of the twelve
pitch classes that may appear in the basis chord or in an accompaniment. These chord
definitions are used by acca to transform accompaniment fragments in the key of C into
the appropriate fragments for each chord symbol. The chord definitions are also used
during melody generation to define chord and scale tones at each point in the piece. In
this case, all the basis chords are C chords. Thus the definition of ‘‘Cm’’ flats the third

IMG/1 - An Incidental Music Generator

and sixth of a C major triad to get the harmonic structure of C minor. Similarly, the defi-
nition of ‘‘C7’’ uses the C dominant seventh unchanged. Note that the E diminished
specification (‘‘Eo’’) is really a diminished seventh chord, so it simply flats the third,
fifth, and seventh of a C dominant seventh chord that has been transposed up by four half-
steps.

acca
The program acca assembles accompaniments according to the harmonic informa-

tion contained in the chord chart file. It does so by cutting and pasting precomposed

Root Chord Basis
Motion Maj. Triad Dom. 7th Aug. 5th Dim. 5th
none 2 2 2 2
up a step 1 1 1 1
up a fourth 1 1 1 1
up a fifth 1 1 1 1
up a sixth 1 1 1 1
ending 2 2 2 2
misc 1 1 1 1

Figure 9 — Stored Accompaniment Bars

accompaniments. For each style thirty-six bars of accompaniment are stored. Figure 9
shows the breakdown of stored accompaniment bars. When the harmonic structure isn’t
changing (root motion = ‘‘none’’ in the figure), a two-bar accompaniment fragment is
used; when the root of the harmonic structure is about to move by a recognized interval
(up by 2, 5, 7, or 9 half steps) an appropriate fragment is used, adjusted so that rhythmic
boundaries are maintained. When the harmonic structure is about to disappear (i.e. at the
end of the piece) a special ending fragment is used, aligned so it falls on an even (multi-
ple of 2) bar boundary. When the chord root is changing quickly (duration of a quarter
note or less) a relatively static ‘‘misc’’ fragment is used (to avoid fragmentation of
motion). With these few special cases a fairly convincing accompaniment can be assem-
bled from very few bars of precomposed material. It is worth noting that the augmented
fifth and diminished fifth chord bases are almost never used and could probably be
replaced by transformations of the dominant seventh material, thereby reducing the stored
accompaniment to a mere eighteen bars.

accl
The program accl generates melodies that follow the harmonic structure specified in

the chord chart file. The techniques used depend on the specified style and vary widely.
For example, the STYLE button labeled ‘‘classical’’ (which uses a simple Alberti Bass
accompaniment) composes a melody by first generating a rhythmic plan from a transition
network like that shown in Figure 10.

In Figure 10, the letters represent rhythmic motives, each one measure in duration;
for example, ‘‘G’’ is a single whole-note, while ‘‘C’’ is four sixteenths, two eighths, a
quarter, and two eighths. Associated with each arc in the network is a probability used to
make a weighted random choice. Once the rhythmic plan is known, accl selects melodic
motion figures that fit both the rhythmic motive and the harmonic structure at each point.

As a contrasting example, the algorithm used by accl for the ‘‘bluegrass’’ style
expends much less effort on rhythmic diversity. It composes solo parts that are particu-
larly suited to the five-string banjo played in the ‘‘Scruggs’’ style. This style typically
consists of complicated, rolling sixteenth-note arpeggiations in which the lower or upper
(or sometimes middle) voices are artfully arranged to carry the melody while the rest of
the arpeggiation provides a harmonic background.

IMG/1 - An Incidental Music Generator

A

B

A

B

E

B

C

E

A

D

E

F

B

C

E

A

B

C

A

B

C

G

Figure 10 — Alberti Bass Melody Rhythmic Network

Banjo beginnings and endings are chosen from a fixed repertoire (guided by length
and other fairly mechanical considerations). The melody notes in the body of the piece
are chosen based on the harmonic structure of the piece, a knowledge of right-hand banjo
picking patterns (more about these later), left-hand ‘‘fretting’’ possibilities, and the
mechanics of the five-string banjo itself. For each possible key a particular tuning of the
banjo is assumed; it is common for banjo players to retune their instruments such that the
notes produced by playing the ‘‘open’’ (i.e. unfretted) strings will be the tonic chord of
the piece (e.g. A E A C# E in the key of A) or the dominant (e.g. G D G B D in the key of
C). As a result, a banjo part for a piece in A will be quite different structurally from a
part for the same piece transposed to C.

Accl disallows any note or sequence of notes that violates the mechanical restric-
tions of the banjo. There are quite a few such constraints. Depending on the tuning, it
may be impossible to play a specific pair of notes together (in almost any tuning, D and E
below middle C cannot be played together). Other pairs of notes may require that the
player’s left hand stretch too far. At common (fast) bluegrass tempi it would not be rea-
sonable to expect to be able to use the same finger on the right hand to pluck two notes in
succession. Accl limits itself to using right-hand picking patterns chosen from a small set
of common patterns. Each of these patterns is an eight note permutation of right-hand
fingers (e.g. the ‘‘forward roll’’ is: thumb, index, middle, thumb, index, middle, thumb,
middle). Although there are 384 permutations of three fingers that involve no consecutive
repeats, most banjo playing only uses three or four standard patterns with an occasional
exception to accomodate a tricky melodic passage.

Each musical style has specialized code in accl to express the characteristics and
peculiarities of the style. Although several styles share code to implement common char-
acteristics, (swing and bebop, march and classical), adding a new style typically means
adding a new routine or generalizing an existing routine. As more styles are added, it is
expected that generalizing an existing routine or using an already generalized routine will
ev entually prevail. For mkcc and acca, this is already the case; adding a new style to
mkcc means adding new tables of harmonic progression, ending, and overall structure
information, while adding a new style to acca means adding thirty-six (carefully chosen)
measures of canned accompaniment.

Conclusion
We hav e described the system known as ‘‘IMG/1’’ and some of the programs that it

uses to compose music to fit a set of user-supplied parameters. The music generated,
while unlikely to appear on the concert stage, is of sufficient quality to be used as inci-
dental or background music and has been used quite successfully as such (despite a few
snide suggestions that it be dubbed ‘‘ElevatorScore’’). Further expansion is planned, both

IMG/1 - An Incidental Music Generator

in the style repertoire and in the number of user-modifiable composition parameters.

Acknowledgements
Gary Haberman, by dint of his musical expertise and enthusiasm has been a great

help in this project. He helped design melody generation algorithms and composed sev-
eral of the sets of stored accompaniment material. He also acted as a sounding board and
reality check, thereby filtering out some of the more ridiculous ideas before much time
was wasted on them. Gareth Loy and Michael Hawley provided much of the initial soft-
ware that allowed us to control synthesizers with computer programs. Stu Feldman pro-
vided many useful suggestions and ran interference at the administrative lev el.

References
BOLOGN83 Bolognesi, T. 1983. ‘‘Automatic Composition: Experiments with Self-

similar Music.’’, Computer Music Journal, 7(1): 25−36.
DODGE85 Dodge, C. & Jerse, T.A. 1985. Computer Music: Synthesis, Composi-

tion, and Performance. Schirmer Books.
EBCIOG88 Ebcioglu, K. 1988. ‘‘An Expert System for Harmonizing Four-part

Chorales.’’ Computer Music Journal, 12(3):3−51.
HILLER70 Hiller, L. 1970. ‘‘Music Composed with Computers − A Historical Sur-

vey.’’ The Computer and Music, pp. 42−96. Cornell University Press.
HILLER81 Hiller, L. 1981. ‘‘Composing with Computers: A Progress Report.’’

Computer Music Journal, 5(4):7−21.
INTELL88 Intelligent Music 1988, ‘‘M’’, ‘‘Jam Factory.’’ P.O. Box 8748, Albany,

New York.
LANGST86 Langston, P.S. 1986. ‘‘(201) 644-2332 • Eedie & Eddie on the Wire, An

Experiment in Music Generation.’’ Proceedings of the Usenix Summer
’86 Conference.

LANGST88 Langston, P.S. 1988. ‘‘Six Techniques for Algorithmic Composition.’’
Bellcore Technical Memorandum #ARH-013020 (presented at the 1989
Internation Computer Music Conference).

LANGST89a Langston, P.S. 1989. ‘‘Little Languages for Music.’’ Bellcore Technical
Memorandum (to appear in Computing Systems journal 3(1)).

LANGST89b Langston, P.S. 1989. ‘‘Getting MIDI from a Sun.’’ Bellcore Technical
Memorandum #ARH-016282.

LANGST90 Langston, P.S. 1990. ‘‘Unix MIDI Tools.’’ Bellcore Technical Memo-
randum (to appear in Software − Practice & Experience).

LOY89 Loy, D. Gareth 1989. ‘‘Composing with computers--a survey of some
compositional formalisms and programming languages for music.’’ In
Current Directions in Computer Music, ed. Max Mathews. MIT Press.

MIDI89 The International MIDI Association, 1989. MIDI 1.0 Detailed Specifica-
tion, Document version 4.1. I.M. A., 5316 W. 57th St., Los Angeles, CA
90056.

SPIEGE85 Spiegel, Laurie 1985. ‘‘Music Mouse’’ Aesthetic Engineering 175
Duane Street, N.Y.C., N.Y.

IMG/1 - An Incidental Music Generator

APPENDIX
BS setup file − created: Fri Apr 27 14:38:07 1990
#
Synth−specific information
#SYNTH ‘P3 & D110 via psl UART/MIDI box‘
#SMISC ‘Setup in 2D−396 on host Puddle‘
#SINIT ‘inst 10=64 | ump‘
#SFINI ‘ ‘
#SPLAY ‘ump‘
#SCLICK chan=10 key=75
#SVNAM chan=1 list 8 ‘ 1 Korg P3‘

‘Brilliant Piano‘ ‘Mellow Piano‘ ‘Saxophone‘ ‘Organ‘
‘Fretless Bass‘ ‘Drums‘ ‘Drums‘ ‘Drums‘

#SVNAM chan=2 list 128 ‘ 2 D110 Part1‘
‘Acou Piano 1‘ ‘Acou Piano 2‘ ‘Acou Piano 3‘ ‘Honky−Tonk‘
‘Elec Piano 1‘ ‘Elec Piano 2‘ ‘Elec Piano 3‘ ‘Elec Piano 4‘
‘Elec Organ 1‘ ‘Elec Organ 2‘ ‘Elec Organ 3‘ ‘Elec Organ 4‘
‘Pipe Organ 1‘ ‘Pipe Organ 2‘ ‘Pipe Organ 3‘ ‘Accordion‘
‘Harpsi 1‘ ‘Harpsi 2‘ ‘Harpsi 3‘ ‘Clav 1‘
‘Clav 2‘ ‘Clav 3‘ ‘Celesta 1‘ ‘Celesta 2‘
‘Violin 1‘ ‘Violin 2‘ ‘Cello 1‘ ‘Cello 2‘
‘Contrabass‘ ‘Pizzicato‘ ‘Harp 1‘ ‘Harp 2‘
‘Strings 1‘ ‘Strings 2‘ ‘Strings 3‘ ‘Strings 4‘
‘Brass 1‘ ‘Brass 2‘ ‘Brass 3‘ ‘Brass 4‘
‘Trumpet 1‘ ‘Trumpet 2‘ ‘Trombone 1‘ ‘Trombone 2‘
‘Horn‘ ‘Fr Horn‘ ‘Engl Horn‘ ‘Tuba‘
‘Flute 1‘ ‘Flute 2‘ ‘Piccolo‘ ‘Recorder‘
‘Pan Pipes‘ ‘Bottleblow‘ ‘Breathpipe‘ ‘Whistle‘
‘Sax 1‘ ‘Sax 2‘ ‘Sax 3‘ ‘Clarinet 1‘
‘Clarinet 2‘ ‘Oboe‘ ‘Bassoon‘ ‘Harmonica‘
‘Fantasy‘ ‘Harmo Pan‘ ‘Chorale‘ ‘Glasses‘
‘Soundtrack‘ ‘Atmosphere‘ ‘Warm Bell‘ ‘Space Horn‘
‘Echo Bell‘ ‘Ice Rains‘ ‘Oboe 2002‘ ‘Echo Pan‘
‘Bell Swing‘ ‘Reso Synth‘ ‘Steam Pad‘ ‘Vibe String‘
‘Syn Lead 1‘ ‘Syn Lead 2‘ ‘Syn Lead 3‘ ‘Syn Lead 4‘
‘Syn Bass 1‘ ‘Syn Bass 2‘ ‘Syn Bass 3‘ ‘Syn Bass 4‘
‘Acou Bass 1‘ ‘Acou Bass 2‘ ‘Elec Bass 1‘ ‘Elec Bass 2‘
‘Slap Bass 1‘ ‘Slap Bass 2‘ ‘Fretless 1‘ ‘Fretless 2‘
‘Vibe‘ ‘Glock‘ ‘Marimba‘ ‘Xylophone‘
‘Guitar 1‘ ‘Guitar 2‘ ‘Elec Gtr 1‘ ‘Elec Gtr 2‘
‘Koto‘ ‘Shamisen‘ ‘Jamisen‘ ‘Sho‘
‘Shakuhachi‘ ‘Wadaiko Set‘ ‘Sitar‘ ‘Steel Drum‘
‘Tech Snare‘ ‘Elec Tom‘ ‘Revrse Cym‘ ‘Ethno Hit‘
‘Timpani‘ ‘Triangle‘ ‘Wind Bell‘ ‘Tube Bell‘
‘Orche Hit‘ ‘Bird Tweet‘ ‘One Note Jam‘ ‘Telephone‘
‘Typewriter‘ ‘Insect‘ ‘Water Bells‘ ‘Jungle Tune‘

#SVNAM chan=3 like 2 ‘ 3 D110 Part2‘
#SVNAM chan=4 like 2 ‘ 4 D110 Part3‘
#SVNAM chan=5 like 2 ‘ 5 D110 Part4‘
#SVNAM chan=6 like 2 ‘ 6 D110 Part5‘
#SVNAM chan=7 like 2 ‘ 7 D110 Part6‘
#SVNAM chan=8 like 2 ‘ 8 D110 Part7‘
#SVNAM chan=9 like 2 ‘ 9 D110 Part8‘
#SVNAM chan=10 list 4 ‘10 D110 Rhythm‘

IMG/1 − An Incidental Music Generator

‘Standard Trap Set‘ ‘Weird Trap Set‘ ‘Weird Trap Set‘ ‘Weird Trap Set‘
#SKMAP chan=10 ‘ 38=40 40=38‘
#SVNAM chan=11 list 0 ‘11 UNUSED‘
#SVNAM chan=12 list 0 ‘12 UNUSED‘
#SVNAM chan=13 list 0 ‘13 UNUSED‘
#SVNAM chan=14 list 0 ‘14 UNUSED‘
#SVNAM chan=15 list 0 ‘15 UNUSED‘
#SVNAM chan=16 list 0 ‘16 UNUSED‘
#
Style−specific information
#STYLE bebop ‘BEBOP‘ 480 960, 10,0,0,0 ‘Bebop Jazz‘
#PARMS bebop key=10 cnti=0 len=‘21:00‘ MM=183 ener=60 pred=67 seed=‘0‘
#LEAD bebop 42,4,40,2,0,0,0,99 0,0,0,2,0,0,0,1 0,0,0,2,0,0,0,1
#BASS bebop inst=89 chan=2 vel=99 oct=2 ctl=0,0,0,99
#CHORD bebop inst=2 chan=3 vel=64 oct=2 ctl=0,0,0,99
#DRUM bebop inst=0 chan=10 vel=64 part=0 ctl=0,0,0,99
#STYLE grass ‘BLUEGRASS‘ 480 240, 0,0,0,0 ‘Bluegrass Banjo‘
#PARMS grass key=7 cnti=1 len=‘28:00‘ MM=150 ener=65 pred=40 seed=‘0‘
#LEAD grass 105,4,127,2,0,0,0,72 0,0,0,2,0,0,0,0 0,0,0,2,0,0,0,0
#BASS grass inst=93 chan=2 vel=64 oct=2 ctl=0,0,0,99
#CHORD grass inst=101 chan=3 vel=104 oct=2 ctl=0,0,0,72
#DRUM grass inst=0 chan=0 vel=1 part=0 ctl=0,0,0,1
#STYLE boogi ‘BOOGIE‘ 480 960, 10,0,0,0 ‘Boogie−Woogie‘
#PARMS boogi key=0 cnti=0 len=‘36:00‘ MM=174 ener=66 pred=62 seed=‘0‘
#LEAD boogi 1,1,64,2,0,0,56,99 3,4,72,2,0,0,0,80 0,0,0,2,0,0,0,0
#BASS boogi inst=91 chan=2 vel=76 oct=1 ctl=0,0,72,64
#CHORD boogi inst=1 chan=3 vel=88 oct=2 ctl=0,0,0,99
#DRUM boogi inst=1 chan=10 vel=32 part=0 ctl=0,0,0,64
#STYLE class ‘CLASSICAL‘ 480 960, 0,0,0,0 ‘Alberti Bass‘
#PARMS class key=0 cnti=0 len=‘28:00‘ MM=120 ener=50 pred=50 seed=‘0‘
#LEAD class 17,4,80,2,0,0,0,99 0,0,0,2,0,0,0,0 0,0,0,2,0,0,0,0
#BASS class inst=17 chan=2 vel=64 oct=2 ctl=0,0,0,99
#CHORD class inst=33 chan=0 vel=1 oct=2 ctl=0,0,0,1
#DRUM class inst=0 chan=0 vel=1 part=0 ctl=0,0,0,1
#STYLE march ‘MARCH‘ 480 960, 10,0,0,0 ‘Strident March‘
#PARMS march key=8 cnti=0 len=‘24:00‘ MM=120 ener=50 pred=50 seed=‘0‘
#LEAD march 41,4,80,2,0,0,0,99 0,0,0,2,0,0,0,0 0,0,0,2,0,0,0,0
#BASS march inst=48 chan=2 vel=64 oct=2 ctl=0,0,0,99
#CHORD march inst=38 chan=3 vel=64 oct=2 ctl=0,0,0,99
#DRUM march inst=0 chan=10 vel=64 part=0 ctl=0,0,0,99
#STYLE mozar ‘MOZART‘ 360 360, 0,0,0,0 ‘Mozart Waltz‘
#PARMS mozar key=0 cnti=0 len=‘30:00‘ MM=96 ener=50 pred=50 seed=‘0‘
#LEAD mozar 17,4,80,1,0,0,0,99 0,0,0,2,0,0,0,0 0,0,0,2,0,0,0,0
#BASS mozar inst=17 chan=0 vel=1 oct=2 ctl=0,0,0,1
#CHORD mozar inst=33 chan=0 vel=1 oct=2 ctl=0,0,0,1
#DRUM mozar inst=0 chan=0 vel=1 part=0 ctl=0,0,0,1
#STYLE samba ‘SAMBA‘ 480 960, 10,11,12,0 ‘Latin Samba‘
#PARMS samba key=4 cnti=0 len=‘48:00‘ MM=120 ener=50 pred=67 seed=‘0‘
#LEAD samba 70,4,99,2,0,0,0,99 0,0,0,2,0,0,0,0 0,0,0,2,0,0,0,0
#BASS samba inst=87 chan=2 vel=64 oct=2 ctl=0,0,0,99
#CHORD samba inst=7 chan=3 vel=64 oct=2 ctl=0,0,0,99
#DRUM samba inst=0 chan=10 vel=64 part=0 ctl=0,0,0,99
#STYLE seque ‘SEQUENCE‘ 480 120, 0,0,0,0 ‘Pentatonic Wallpaper‘
#PARMS seque key=0 cnti=0 len=‘10:00‘ MM=168 ener=50 pred=50 seed=‘0‘

IMG/1 − An Incidental Music Generator

#LEAD seque 72,4,72,2,0,0,0,99 79,2,80,2,0,0,0,99 0,0,0,2,0,0,0,0
#BASS seque inst=87 chan=0 vel=1 oct=2 ctl=0,0,0,1
#CHORD seque inst=69 chan=0 vel=1 oct=2 ctl=0,0,0,1
#DRUM seque inst=0 chan=0 vel=1 part=0 ctl=0,0,0,1
#STYLE swing ‘SWING‘ 480 960, 10,0,0,0 ‘Swing Combo Jazz‘
#PARMS swing key=10 cnti=0 len=‘60:00‘ MM=128 ener=60 pred=67 seed=‘0‘
#LEAD swing 60,4,80,2,0,0,0,99 0,0,0,2,0,0,0,0 0,0,0,2,0,0,0,0
#BASS swing inst=89 chan=2 vel=64 oct=2 ctl=0,0,0,99
#CHORD swing inst=2 chan=3 vel=64 oct=2 ctl=0,0,0,99
#DRUM swing inst=0 chan=10 vel=64 part=0 ctl=0,0,0,99
#STYLE toner ‘TONE ROW‘ 360 360, 0,0,0,0 ‘12−tone Sequences‘
#PARMS toner key=0 cnti=0 len=‘21:00‘ MM=120 ener=74 pred=67 seed=‘0‘
#LEAD toner 30,2,96,2,0,0,0,99 70,3,80,2,0,0,0,99 1,4,80,2,0,0,0,99
#BASS toner inst=89 chan=0 vel=1 oct=2 ctl=0,0,0,1
#CHORD toner inst=1 chan=0 vel=1 oct=2 ctl=0,0,0,1
#DRUM toner inst=0 chan=0 vel=1 part=0 ctl=0,0,0,1

IMG/1 − An Incidental Music Generator

